南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (11): 2256-2264.doi: 10.12122/j.issn.1673-4254.2024.11.24
• • 上一篇
李粉霞(), 林浩生, 黎一琳, 朱雯倩, 孙元洁, 黄源, 裘毓雯, 秦霞, 常清贤()
收稿日期:
2024-05-27
出版日期:
2024-11-20
发布日期:
2024-11-29
通讯作者:
常清贤
E-mail:lifenxia123@qq.com;1614268071@qq.com
作者简介:
李粉霞,博士,助理研究员,E-mail: lifenxia123@qq.com
基金资助:
Fenxia LI(), Haosheng LIN, Yilin LI, Wenqian ZHU, Yuanjie SUN, Yuan HUANG, Yuwen QIU, Xia QIN, Qingxian CHANG()
Received:
2024-05-27
Online:
2024-11-20
Published:
2024-11-29
Contact:
Qingxian CHANG
E-mail:lifenxia123@qq.com;1614268071@qq.com
摘要:
目的 探讨孤立性侧脑室扩张胎儿孕妇羊水外泌体中的微小RNA(miRNA)的差异表达,对其靶基因进行预测分析。 方法 收集2021年9月~2024年5月在南方医科大学南方医院产前超声诊断为胎儿中度孤立性侧脑室扩张的孕妇羊水样本9例,和由于高龄或唐筛高风险行羊水穿刺的正常胎儿对照组的孕妇羊水样本8例。分离羊水外泌体,运用miRNA测序技术筛选两组羊水外泌体中的差异表达miRNA,并从中挑选3个在对照和样本组中的表达差异显著,且文献报道参与的信号通路和侧脑室关联的miRNA进行qPCR验证测序结果。对显著差异表达的TOP 40个miRNA进行靶基因预测及功能分析(GO)和信号通路分析(KEGG)。通过双荧光素酶报告基因技术验证miR-122-5p对预测靶基因AKT3和CCDC88C的调控。 结果 与对照组相比,侧脑室扩张组中存在272个显著差异表达miRNA,其中表达上调的有43个,表达下调的有229个。GO分析发现靶基因主要功能与转录因子结合、转运蛋白活性、神经系统过程、跨膜运输等有关。KEGG通路分析发现富集显著的功能通路包括有MAPK信号通路、Wnt信号通路、配体-受体神经活性互作和细胞因子-细胞因子受体互作等。qPCR验证结果发现,与对照组相比,miR-122-5p表达显著下降(P<0.05),与测序结果一致;而let-7b-5p的表达病例组较对照组下调,与测序结果相反。双荧光素酶报告基因检测结果显示miR-122-5p不调控AKT3和CCDC88C的表达。 结论 羊水外泌体中高丰度差异表达的miRNAs可能通过参与MAPK信号通路、PI3K-Akt信号通路、Wnt信号通路和cGMP-PKG通路在胎儿侧脑室扩张的发生发展中发挥作用。
李粉霞, 林浩生, 黎一琳, 朱雯倩, 孙元洁, 黄源, 裘毓雯, 秦霞, 常清贤. 孤立性侧脑室扩张胎儿孕妇羊水外泌体miRNA差异表达谱[J]. 南方医科大学学报, 2024, 44(11): 2256-2264.
Fenxia LI, Haosheng LIN, Yilin LI, Wenqian ZHU, Yuanjie SUN, Yuan HUANG, Yuwen QIU, Xia QIN, Qingxian CHANG. Differential expression profile of miRNAs in maternal amniotic fluid exosomes in fetuses with isolated ventriculomegaly[J]. Journal of Southern Medical University, 2024, 44(11): 2256-2264.
Name | Sequence |
---|---|
miR-122-5p | 3' gtT-TGTG-GTAACAGTGTGAGGt 5' |
AKT3 3'UTR-WT | 5' acATACACGCA-AAT-ACACTCCa 3' |
AKT3 3'UTR-mut | 5' actTtCtCcCt-AtT-tCtCaCgA 3' |
CCDC88C 3'UTR-WT | 5' agAAGATGAGTTGTCACACTCCc 3' |
CCDC88C 3'UTR-mut | 5' agtAGATGAGaTcTgAgAgTgCg 3' |
表1 miR-122-5p和ATK3, CCDC88C的合成序列
Tab.1 Synthesized sequences of miR-122, ATK3, and CCDC88C for dual luciferase reporter assays
Name | Sequence |
---|---|
miR-122-5p | 3' gtT-TGTG-GTAACAGTGTGAGGt 5' |
AKT3 3'UTR-WT | 5' acATACACGCA-AAT-ACACTCCa 3' |
AKT3 3'UTR-mut | 5' actTtCtCcCt-AtT-tCtCaCgA 3' |
CCDC88C 3'UTR-WT | 5' agAAGATGAGTTGTCACACTCCc 3' |
CCDC88C 3'UTR-mut | 5' agtAGATGAGaTcTgAgAgTgCg 3' |
图1 羊水外泌体鉴定
Fig.1 Identification of exosomes in maternal amniotic fluid. A: Exosome morphology under transmission electron microscope. B: Protein expressions of exosome markers CD9, CD63, CD81 and TSG101 detected by Western blotting. C: Particle size of the exosomes.
图2 羊水外泌体在侧脑室扩张样本和对照组中差异表达的miRNA的丰度热图
Fig.2 Heat map of the differentially expressed miRNAs between ventriculomegaly and control groups. Red and blue indicates up-regulated and down-regulated miRNAs, respectively.
图3 qPCR检测两组羊水外泌体中let-7b-5p,miR-122-5p和miR-146a-5p表达水平
Fig.3 Expression levels of let-7b-5p, miR-122-5p and miR-146a-5p in amniotic fluid exosomes from the two groups detected by RT-qPCR.
图4 miR-122-5p 的预测靶基因荧光素酶活性测定结果
Fig.4 Result of 3'UTR luciferase report system for assessing interactions between miRNA-122-5p and its predicted target genes. A: Luciferase assays with AKT3 3'UTR-WT/mut. B: Luciferase assays with CCDC88C 3'UTR-WT/mut.
图5 KEGG信号通路分析TOP40差异表达miRNA的靶基因功能
Fig.5 KEGG pathway analysis of the top 40 significant differential miRNAs in the exosomes for biological functions of their target genes.
1 | Gaglioti P, Oberto M, Todros T. The significance of fetal ventriculomegaly: etiology, short- and long-term outcomes[J]. Prenat Diagn, 2009, 29(4): 381-8. |
2 | Griffiths PD, Reeves MJ, Morris JE, et al. A prospective study of fetuses with isolated ventriculomegaly investigated by antenatal sonography and in utero MR imaging[J]. AJNR Am J Neuroradiol, 2010, 31(1): 106-11. |
3 | Salomon LJ, Bernard JP, Ville Y. Reference ranges for fetal ventricular width: a non-normal approach[J]. Ultrasound Obstet Gynecol, 2007, 30(1): 61-6. |
4 | 彭奕贤, 黄莉萍, 黎 静, 等. 孤立性侧脑室扩张胎儿的结局及其影像学随访的结果[J]. 中华妇产科杂志, 2018, 53(5): 294-8. |
5 | McKechnie L, Vasudevan C, Levene M. Neonatal outcome of congenital ventriculomegaly[J]. Semin Fetal Neonatal Med, 2012, 17(5): 301-7. |
6 | van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-28. |
7 | Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-9. |
8 | Ghafourian M, Mahdavi R, Akbari Jonoush Z, et al. The implications of exosomes in pregnancy: emerging as new diagnostic markers and therapeutics targets[J]. Cell Commun Signal, 2022, 20(1): 51. |
9 | Bardanzellu F, Fanos V. The choice of amniotic fluid in metabolomics for the monitoring of fetus health - update[J]. Expert Rev Proteomics, 2019, 16(6): 487-99. |
10 | Zwemer LM, Bianchi DW. The amniotic fluid transcriptome as a guide to understanding fetal disease[J]. Cold Spring Harb Perspect Med, 2015, 5(4): a023101. |
11 | Ebert B, Rai AJ. Isolation and characterization of amniotic fluid-derived extracellular vesicles for biomarker discovery[J]. Methods Mol Biol, 2019, 1885: 287-94. |
12 | 丁凯泽, 余 蕾, 黄 智, 等. 唐氏综合征胎儿羊水外泌体miRNA差异表达谱分析[J]. 南方医科大学学报, 2022, 42(2): 293-9. |
13 | 柯买春, 王小中, 袁素珍, 等. 羊水外泌体21号染色体源性miRNAs检测在唐氏综合征产前诊断中的意义[J]. 江西医药, 2022, 57(9): 1270-5. |
14 | Xie JT, Zhou Y, Gao WZ, et al. The relationship between amniotic fluid miRNAs and congenital obstructive nephropathy[J]. Am J Transl Res, 2017, 9(4): 1754-63. |
15 | Li JZ, Fu Y, Liu QS, et al. Multiomics-based study of amniotic fluid small extracellular vesicles identified Moesin as a biomarker for antenatal hydronephrosis[J]. Clin Transl Med, 2023, 13(8): e1360. |
16 | Yang HN, Yang SP, Shen HL, et al. Construction of the amniotic fluid-derived exosomal ceRNA network associated with ventricular septal defect[J]. Genomics, 2021, 113(6): 4293-302. |
17 | Gebara N, Scheel J, Skovronova R, et al. Single extracellular vesicle analysis in human amniotic fluid shows evidence of phenotype alterations in preeclampsia[J]. J Extracell Vesicles, 2022, 11(5): e12217. |
18 | Fabietti I, Nardi T, Favero C, et al. Extracellular vesicles and their miRNA content in amniotic and tracheal fluids of fetuses with severe congenital diaphragmatic hernia undergoing fetal intervention[J]. Cells, 2021, 10(6): 1493. |
19 | Nowak JS, Michlewski G. miRNAs in development and pathogenesis of the nervous system[J]. Biochem Soc Trans, 2013, 41(4): 815-20. |
20 | Li SJ, Lv DQ, Yang H, et al. A review on the current literature regarding the value of exosome miRNAs in various diseases[J]. Ann Med, 2023, 55(1): 2232993. |
21 | Chen SY, Li H, Zheng JC, et al. Expression profiles of exosomal microRNAs derived from cerebrospinal fluid in patients with congenital Hydrocephalus determined by microRNA sequencing[J]. Dis Markers, 2022, 2022: 5344508. |
22 | Spaull R, McPherson B, Gialeli A, et al. Exosomes populate the cerebrospinal fluid of preterm infants with post-haemorrhagic hydrocephalus[J]. Int J Dev Neurosci, 2019, 73: 59-65. |
23 | Duy PQ, Furey CG, Kahle KT. Trim71/Lin-41 links an ancient miRNA pathway to human congenital Hydrocephalus [J]. Trends Mol Med, 2019, 25(6): 467-9. |
24 | Wang CM, Zhang L, Cao MQ, et al. Thioredoxin facilitates hepatocellular carcinoma stemness and metastasis by increasing BACH1 stability to activate the AKT/mTOR pathway[J]. FASEB J, 2023, 37(6): e22943. |
25 | Mirzaa GM, Rivière JB, Dobyns WB. Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP[J]. Am J Med Genet C Semin Med Genet, 2013, 163C(2): 122-30. |
26 | Hashimoto Y, Akiyama Y, Otsubo T, et al. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis[J]. Carcinogenesis, 2010, 31(5): 777-84. |
27 | Lin X, Liu BH, Yang XS, et al. Genetic deletion of Rnd3 results in aqueductal stenosis leading to hydrocephalus through up-regulation of Notch signaling[J]. Proc Natl Acad Sci USA, 2013, 110(20): 8236-41. |
28 | Magnelli L, Schiavone N, Staderini F, et al. MAP kinases pathways in gastric cancer[J]. Int J Mol Sci, 2020, 21(8): 2893. |
29 | Mandell JW, VandenBerg SR. ERK/MAP kinase is chronically activated in human reactive astrocytes[J]. Neuroreport, 1999, 10(17): 3567-72. |
30 | Xu H, Zhang SL, Tan GW, et al. Reactive gliosis and neuroinflammation in rats with communicating hydrocephalus[J]. Neuroscience, 2012, 218: 317-25. |
31 | Li N, Zhang QY, Zou JL, et al. MiR-215 promotes malignant progression of gastric cancer by targeting RUNX1[J]. Oncotarget, 2016, 7(4): 4817-28. |
32 | Yan H, Chen YJ, Li LY, et al. Decorin alleviated chronic hydrocephalus via inhibiting TGF-β1/Smad/CTGF pathway after subarachnoid hemorrhage in rats[J]. Brain Res, 2016, 1630: 241-53. |
33 | Xu H, Xu B, Wang ZX, et al. Inhibition of Wnt/β-catenin signal is alleviated reactive gliosis in rats with hydrocephalus[J]. Childs Nerv Syst, 2015, 31(2): 227-34. |
34 | Mo JS, Park WC, Choi SC, et al. MicroRNA 452 regulates cell proliferation, cell migration, and angiogenesis in colorectal cancer by suppressing VEGFA expression[J]. Cancers, 2019, 11(10): 1613. |
35 | Lolansen SD, Rostgaard N, Oernbo EK, et al. Inflammatory markers in cerebrospinal fluid from patients with Hydrocephalus: a systematic literature review[J]. Dis Markers, 2021, 2021: 8834822. |
36 | Ma Z, Li K, Chen P, et al. MiR-134, mediated by IRF1, suppresses tumorigenesis and progression by targeting VEGFA and MYCN in osteosarcoma[J]. Anticancer Agents Med Chem, 2020, 20(10): 1197-208. |
37 | Huang M, Wang Y, Wang ZN, et al. MiR-134-5p inhibits osteoclastogenesis through a novel miR-134-5p/Itgb1/MAPK pathway[J]. J Biol Chem, 2022, 298(7): 102116. |
38 | Yan L, Zhou RH, Feng Y, et al. MiR-134-5p inhibits the malignant phenotypes of osteosarcoma via ITGB1/MMP2/PI3K/Akt pathway[J]. Cell Death Discov, 2024, 10(1): 193. |
39 | Amr KS, Elmawgoud Atia HA, Elazeem Elbnhawy RA, et al. Early diagnostic evaluation of miR-122 and miR-224 as biomarkers for hepatocellular carcinoma[J]. Genes Dis, 2017, 4(4): 215-21. |
40 | 刁 波, 杨 前, 王 刚, 等. 大鼠颅脑损伤后脑组织miR-122-5p含量变化及其对神经功能的影响[J]. 中国临床神经外科杂志, 2018, 23(4): 250-3. |
41 | 康璐璐, 龙小兵, 王 静, 等. MiR-122-5p调节创伤性脑外伤后小胶质细胞极化减弱炎症反应[J]. 中华急诊医学杂志, 2022, 31(8): 1077-84. |
42 | 杨才弟, 王丽娟, 曾鼎华, 等. MiR-122通过靶向RUNX2诱导胶质瘤细胞凋亡的实验研究[J]. 临床肿瘤学杂志, 2019, 24(2): 124-8. |
43 | Yu N, Tian WB, Liu C, et al. MiR-122-5p promotes peripheral and central nervous system inflammation in a mouse model of intracerebral hemorrhage via disruption of the MLLT1/PI3K/AKT signaling[J]. Neurochem Res, 2023, 48(12): 3665-82. |
44 | Nellist M, Schot R, Hoogeveen-Westerveld M, et al. Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycemia[J]. Mol Genet Metab, 2015, 114(3): 467-73. |
45 | Marguet F, Vezain M, Marcorelles P, et al. Neuropathological hallmarks of fetal hydrocephalus linked to CCDC88C pathogenic variants[J]. Acta Neuropathol Commun, 2021, 9(1): 104. |
[1] | 何思齐, 文楠, 陈勋, 王跃, 张艇, 牟雁东. 枸杞糖肽可减轻放射治疗后人牙龈成纤维细胞来源的外泌体导致的成骨抑制[J]. 南方医科大学学报, 2024, 44(9): 1752-1759. |
[2] | 戴荣, 曹泽平, 刘传娇, 葛永, 程梦, 王伟丽, 陈义珍, 张磊, 王亿平. 清肾颗粒通过调控外泌体、miR-330-3p以及CREBBP表达抑制小鼠肾纤维化[J]. 南方医科大学学报, 2024, 44(8): 1431-1440. |
[3] | 陈光亚, 向星亮, 曾兆祥, 黄荣增, 金姝娜, 肖明中, 宋成武. 地五养肝方对非酒精性脂肪肝小鼠循环外泌体溶血甘油磷脂的调控作用[J]. 南方医科大学学报, 2024, 44(7): 1382-1388. |
[4] | 梁国新, 唐红悦, 郭畅, 张明明. miR-224-5p调控PI3K/Akt/FoxO1轴抑制氧化应激减轻缺氧/复氧诱导的心肌细胞损伤[J]. 南方医科大学学报, 2024, 44(6): 1173-1181. |
[5] | 苑通, 郭玉莹, 张俊伶, 樊赛军. 正常小鼠血清通过抑制focal adhesion信号通路减轻小鼠放射性肺炎[J]. 南方医科大学学报, 2024, 44(5): 801-809. |
[6] | 孙晓鹏, 史 航, 张 磊, 刘 中, 李克威, 钱玲玲, 朱星宇, 杨康佳, 付 强, 丁 华. 外胚层间充质干细胞来源的外泌体通过控制炎症和氧化损伤减少M1型小胶质细胞并促进H2O2处理后PC12细胞的存活[J]. 南方医科大学学报, 2024, 44(1): 119-128. |
[7] | 何艳娟, 李卓颖, 申 琳, 石丁华, 李申堂. 心脏祖细胞来源的外泌体可减轻心肌梗死小鼠的心肌损伤:基于mTOR途径诱导Treg细胞分化[J]. 南方医科大学学报, 2023, 43(9): 1644-1650. |
[8] | 徐梦歧, 石宇彤, 刘俊平, 吴敏敏, 张凤梅, 何志强, 唐 敏. JAG1影响单核-巨噬细胞重塑三阴性乳腺癌转移前微环境:基于外泌体中的LncRNA MALAT1[J]. 南方医科大学学报, 2023, 43(9): 1525-1535. |
[9] | 林嘉宜, 娄安妮, 李 旭. 脂多糖刺激巨噬细胞分泌含miR-155-5p的外泌体促进肝星状细胞的活化及迁移[J]. 南方医科大学学报, 2023, 43(6): 994-1001. |
[10] | 王 丽, 严志锐, 夏耀雄. 抑制RAB27a能够抑制三阴乳腺癌细胞的增殖、侵袭和粘附[J]. 南方医科大学学报, 2023, 43(4): 560-567. |
[11] | 刘 屿, 曾 莲, 王卫红, 杨艳玲, 王 洲, 刘建启, 李 卫, 孙婧宇, 余晓宏. 人骨髓间充质干细胞外泌体来源的miR-335-5p促进人牙周膜干细胞的成骨分化:基于下调DKK1表达[J]. 南方医科大学学报, 2023, 43(3): 420-427. |
[12] | 张梦莹, 李 志, 裴纬亚, 李雪琴, 杨 辉, 朱小龙, 吕 坤. M2型巨噬细胞来源的外泌体lncRNA NR_028113.1通过激活JAK2/STAT3通路促进巨噬细胞的极化[J]. 南方医科大学学报, 2023, 43(3): 393-399. |
[13] | 黄永祺, 喻 伟, 游月华. 槟榔碱通过促进巨噬细胞分泌含miR-155-5p外泌体诱导人口腔成纤维细胞的活化[J]. 南方医科大学学报, 2023, 43(1): 60-67. |
[14] | 吴小凤, 詹日明, 程大钊, 陈 黎, 王天雨, 唐旭东. 非小细胞肺癌细胞外泌体源性FZD10促进体外血管生成[J]. 南方医科大学学报, 2022, 42(9): 1351-1358. |
[15] | 管鹏飞, 崔瑞文, 王其友, 孙永建. 负载骨髓干细胞来源外泌体的3D水凝胶通过调节免疫促进损伤软骨的修复[J]. 南方医科大学学报, 2022, 42(4): 528-537. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||