1 |
Ballard DH, Boyer CJ, Alexander JS. Organoids-Preclinical Models of Human Disease[J]. N Engl J Med, 2019, 380(20): 1981-2.
|
2 |
Kondo J, Inoue M. Application of cancer organoid model for drug screening and personalized therapy[J]. Cells, 2019, 8(5): 470.
|
3 |
Cleary SJ, Pitchford SC, Amison RT, et al. Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology[J]. Br J Pharmacol, 2020, 177(21): 4851-65.
|
4 |
Papazian D, Wurtzen PA, Hansen SW. Polarized airway epithelial models for immunological Co-Culture Studies[J]. Int Arch Allergy Immunol, 2016, 170(1): 1-21.
|
5 |
Qin X, Sufi J, Vlckova P, et al. Cell-type-specific signaling networks in heterocellular organoids[J]. Nat Methods, 2020, 17(3): 335-42.
|
6 |
Charles DD, Fisher JR, Hoskinson SM, et al. Development of a novel ex vivo nasal epithelial cell model supporting colonization with human nasal microbiota[J]. Front Cell Infect Microbiol, 2019, 9 165.
|
7 |
Antoni D, Burckel H, Josset E, et al. Three-dimensional cell culture: a breakthrough in vivo [J]. Int J Mol Sci, 2015, 16(3): 5517-27.
|
8 |
Li C, Chiu MC, Yu Y, et al. Establishing human lung organoids and proximal differentiation to generate mature airway organoids[J]. J Vis Exp, 2022, (181).
|
9 |
Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients[J]. N Engl J Med, 2020, 382(12): 1177-9.
|
10 |
Wang XW, Xia TL, Tang HC, et al. Establishment of a patient-derived organoid model and living biobank for nasopharyngeal carcinoma[J]. Ann Transl Med, 2022, 10(9): 526.
|
11 |
Liu Y, Zhou Y, Chen P. Lung cancer organoids: models for preclinical research and precision medicine[J]. Front Oncol, 2023, 13 1293441.
|
12 |
Schutgens F, Clevers H. Human organoids: tools for understanding biology and treating diseases[J]. Annu Rev Pathol, 2020, 15, 211-34.
|
13 |
Tsang JO, Zhou J, Zhao X, et al. Development of three-dimensional human intestinal organoids as a physiologically relevant model for characterizing the viral replication kinetics and antiviral susceptibility of enteroviruses[J]. Biomedicines, 2021, 9(1).
|
14 |
Bredenoord AL, Clevers H, Knoblich JA. Human tissues in a dish: The research and ethical implications of organoid technology[J]. Science, 2017, 355(6322).
|
15 |
Li M, Izpisua Belmonte JC. Organoids - Preclinical Models of Human Disease. Reply. N Engl J Med, 2019, 380(20): 1982.
|
16 |
Shapira T, Monreal IA, Dion SP, et al. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic[J]. Nature, 2022, 605(7909): 340-8.
|
17 |
Elbadawy M, Kato Y, Saito N, et al. Establishment of intestinal organoid from rousettus leschenaultii and the susceptibility to bat-associated viruses, SARS-CoV-2 and Pteropine Orthoreovirus[J]. Int J Mol Sci, 2021, 22(19).
|
18 |
Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes[J]. Science, 2020, 369(6499): 50-4.
|
19 |
Han Y, Duan X, Yang L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids[J]. Nature, 2021, 589(7841): 270-5.
|
20 |
Chiu MC, Li C, Liu X, et al. A bipotential organoid model of respiratory epithelium recapitulates high infectivity of SARS-CoV-2 Omicron variant[J]. Cell Discov, 2022, 8(1): 57.
|
21 |
汪 珂, 于 言, 韩 日. 可用于新冠病毒研究的鼻粘膜类器官模型的建立[J]. 南方医科大学学报, 2022, 42(6): 868-77.
|
22 |
Hsu KC, Chen YF, Lin SR, et al. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis[J]. BMC Bioinformatics, 2011, 12(Suppl 1): S33.
|
23 |
Zhang L, Li Q, Liu Q, et al. A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system[J]. Hum Vaccin Immunother, 2017, 13(8): 1811-7.
|
24 |
Su S, Wong G, Shi W, et al. Epidemiology, Genetic recombination, and pathogenesis of coronaviruses[J]. Trends Microbiol, 2016, 24(6): 490-502.
|
25 |
Lednicky JA, Waltzek TB, McGeehan E, et al. Isolation and genetic characterization of human coronavirus NL63 in primary human renal proximal tubular epithelial cells obtained from a commercial supplier, and confirmation of its replication in two different types of human primary kidney cells. Virol J, 2013, 10 213.
|
26 |
Sungnak W, Huang N, Becavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med, 2020, 26(5): 681-7.
|
27 |
Wu CT, Lidsky PV, Xiao Y, et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell, 2023, 186(1): 112-30. e20.
|
28 |
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020, 181(2): 271-80. e8.
|
29 |
Zhou M, Liu Y, Cao J, et al. Bergamottin, a bioactive component of bergamot, inhibits SARS-CoV-2 infection in golden Syrian hamsters. Antiviral Res, 2022, 204 105365.
|
30 |
Antunes JL, Amado J, Veiga F, et al. Nanosystems, drug molecule functionalization and intranasal delivery: an update on the most promising strategies for increasing the therapeutic efficacy of antidepressant and anxiolytic drugs[J]. Pharmaceutics, 2023, 15(3).
|
31 |
Ferreira MD, Duarte J, Veiga F, et al. Nanosystems for brain targeting of antipsychotic drugs: an update on the most promising nanocarriers for increased bioavailability and therapeutic efficacy[J]. Pharmaceutics, 2023, 15(2).
|
32 |
Alberto M, Paiva-Santos AC, Veiga F, et al. Lipid and polymeric nanoparticles: successful strategies for nose-to-brain drug delivery in the treatment of depression and anxiety disorders[J]. Pharmaceutics, 2022, 14(12).
|
33 |
Ulusoy S, Bayar Muluk N, Karpischenko S, et al. Mechanisms and solutions for nasal drug delivery-a narrative review[J]. Eur Rev Med Pharmacol Sci, 2022, 26(2 ): 72-81.
|