1 |
Lee DH, Choi YS, Potter HG, et al. Reverse total shoulder arthroplasty: an imaging overview[J]. Skeletal Radiol, 2020, 49(1): 19-30. DOI: 10.1007/s00256-019-03275-0
|
2 |
Bohsali KI, Bois AJ, Wirth MA.Complications of shoulder arthroplasty[J]. J Bone Joint Surg, 2017, 99(3): 256-69. DOI: 10.2106/jbjs.16.00935
|
3 |
Lilley BM, Lachance A, Peebles AM, et al. What is the deviation in 3D preoperative planning software? A systematic review of concordance between plan and actual implant in reverse total shoulder arthroplasty[J]. J Shoulder Elb Surg, 2022, 31(5): 1073-82. DOI: 10.1016/j.jse.2021.12.006
|
4 |
Lewis GS, Bryce CD, Davison AC, et al. Location of the optimized centerline of the glenoid vault: a comparison of two operative techniques with use of three-dimensional computer modeling[J]. J Bone Jt Surg Am Vol, 2010, 92(5): 1188-94. DOI: 10.2106/jbjs.i.00131
|
5 |
Budge MD, Lewis GS, Schaefer E, et al. Comparison of standard two-dimensional and three-dimensional corrected glenoid version measurements[J]. J Shoulder Elb Surg, 2011, 20(4): 577-83. DOI: 10.1016/j.jse.2010.11.003
|
6 |
Iannotti JP, Walker K, Rodriguez E, et al. Accuracy of 3-dimensional planning, implant templating, and patient-specific instrumentation in anatomic total shoulder arthroplasty[J]. J Bone Joint Surg Am, 2019, 101(5): 446-57. DOI: 10.2106/jbjs.17.01614
|
7 |
Iannotti JP, Weiner S, Rodriguez E, et al. Three-dimensional imaging and templating improve glenoid implant positioning[J]. J Bone Joint Surg Am, 2015, 97(8): 651-8. DOI: 10.2106/jbjs.n.00493
|
8 |
Walch G, Vezeridis PS, Boileau P, et al. Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study[J]. J Shoulder Elbow Surg, 2015, 24(2): 302-9. DOI: 10.1016/j.jse.2014.05.029
|
9 |
Mehta MP, Vogel LA, Shiu BB, et al. Determining glenoid component version after total shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2018, 27(9): 1588-95. DOI: 10.1016/j.jse.2018.03.003
|
10 |
Boileau P, Cheval D, Gauci MO, et al. Automated three-dimensional measurement of glenoid version and inclination in arthritic shoulders[J]. J Bone Joint Surg Am, 2018, 100(1): 57-65. DOI: 10.2106/jbjs.16.01122
|
11 |
Jacquot A, Gauci MO, Chaoui J, et al. Proper benefit of a three dimensional pre-operative planning software for glenoid component positioning in total shoulder arthroplasty[J]. Int Orthop, 2018, 42(12): 2897-906. DOI: 10.1007/s00264-018-4037-1
|
12 |
Lung TS, Cruickshank D, Grant HJ, et al. Factors contributing to glenoid baseplate micromotion in reverse shoulder arthroplasty: a biomechanical study[J]. J Shoulder Elbow Surg, 2019, 28(4): 648-53. DOI: 10.1016/j.jse.2018.09.012
|
13 |
Ausberto VG, Glen AD. Computer-assisted navigation improve baseplate screw configuration in reverse shoulder arthroplasty [J]. J Orthopaedics, 2016, 36: 29-35.
|
14 |
Moreschini F, Colasanti GB, Cataldi C, et al. Pre-operative CT-based planning integrated with intra-operative navigation in reverse shoulder arthroplasty: data acquisition and analysis protocol, and preliminary results of navigated versus conventional surgery[J]. Dose-response, 2020, 18(4): 70832. DOI: 10.1177/1559325820970832
|
15 |
Farron A, Terrier A, Büchler P. Risks of loosening of a prosthetic glenoid implanted in retroversion[J]. J Shoulder Elbow Surg, 2006, 15(4): 521-6. DOI: 10.1016/j.jse.2005.10.003
|
16 |
Boileau P, Gauci MO, Wagner ER, et al. The reverse shoulder arthroplasty angle: a new measurement of glenoid inclination for reverse shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2019, 28(7): 1281-90. DOI: 10.1016/j.jse.2018.11.074
|
17 |
Cabarcas BC, Cvetanovich GL, Espinoza-Orias AA, et al. Novel 3-dimensionally printed patient-specific guide improves accuracy compared with standard total shoulder arthroplasty guide: a cadaveric study[J]. JSES Open Access, 2019, 3(2): 83-92. DOI: 10.1016/j.jses.2019.04.001
|
18 |
Yang YH, Zuo JL, Liu T, et al. Glenoid morphology and the safe zone for protecting the suprascapular nerve during baseplate fixation in reverse shoulder arthroplasty[J]. Int Orthop, 2018, 42(3): 587-93. DOI: 10.1007/s00264-017-3646-4
|
19 |
Mizuno N, Nonaka S, Ozaki R, et al. Three-dimensional assessment of the normal Japanese glenoid and comparison with the normal French glenoid[J]. Orthop Traumatol Surg Res, 2017, 103(8): 1271-5. DOI: 10.1016/j.otsr.2017.08.015
|
20 |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]. MICCAI. Springer, 2015: 234-41. DOI: 10.1007/978-3-319-24574-4_28
|
21 |
Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nat Methods, 2021, 18(2): 203-11. DOI: 10.1038/s41592-020-01008-z
|
22 |
Provencher CD, Matthew T, et al. Recurrent shoulder instability: current concepts for evaluation and management of glenoid bone loss[J]. J Bone Joint Surge, 2012, (2): 133-51. DOI: 10.1016/j.yhls.2011.04.082
|
23 |
Boileau P. Complications and revision of reverse total shoulder arthroplasty[J]. Orthop Traumatol Surg Res, 2016, 102(1 ): S33-43. DOI: 10.1016/j.otsr.2015.06.031
|
24 |
Parsons M, Greene A, Polakovic S, et al. Assessment of surgeon variability in preoperative planning of reverse total shoulder arthroplasty: a quantitative comparison of 49 cases planned by 9 surgeons[J]. J Shoulder Elbow Surg, 2020, 29(10): 2080-8. DOI: 10.1016/j.jse.2020.02.023
|
25 |
MedicalMaterialise.How to plan a knee surgery in materialise mimics[OL]. 2020,.
|