2. 遵义医科大学口腔医学院,贵州 遵义 563000;
3. 电子科技大学附属医学院,四川 成都 610054;
4. 中国科学院成都生物研究所,四川 成都 610041
2. School of Stomatology, Zunyi Medicial University, Zunyi 563000, China;
3. School of Medicine, University of Electronic Science and Technology, Chengdu 610054, China;
4. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
牙周炎是一种破坏牙周支持组织完整性的慢性炎症性疾病,牙周致病菌是牙周炎的始动因子。目前已证实有十余种不同的牙周致病菌如牙龈卟啉单胞菌,伴放线聚集杆菌和福赛坦氏菌等参与牙周炎的病理过程[1]。牙周致病菌能通过脂多糖(LPS),菌毛和蛋白酶等毒力因子在牙周局部组织介导炎症,牙周致病菌及炎症介质等也可能进入血液循环,对远处器官产生影响。近年来,有多项研究证明牙周致病菌与动脉粥样硬化,糖尿病等多种系统性疾病的发生发展密切相关,本文从牙周致病菌促进系统性疾病的机制及牙周致病菌与系统性疾病的相关性方面作一综述。
1 牙周致病菌促进系统性疾病的可能机制 1.1 局部刺激牙周炎症,介导全身炎症反应牙周致病菌的局部刺激能导致牙周组织的慢性炎症状态,升高循环系统中的炎症细胞因子水平,影响系统性疾病的发生发展。牙周致病菌局部刺激牙部组织产生白细胞介素-1(IL-1),白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)等炎症细胞因子,这些炎症细胞因子可由牙周组织进入循环系统,介导全身炎症状态[2]。如循环系统中的IL-1,IL-6和TNF-α可以刺激肝脏细胞产生C反应蛋白和纤溶酶原激活物抑制剂-1等急性期蛋白,介导急性炎症反应[3]。循环系统中C反应蛋白的升高能增加冠心病,心肌梗塞和动脉粥样硬化等心血管疾病的风险,也与糖尿病和类风湿性关节炎等的发生发展密切相关[4]。循环系统中的TNF-α可以刺激血管上皮细胞增殖,促进肿瘤血管生长,加速肿瘤细胞增殖[4-5]。
1.2 进入全身多个系统并在远处器官定植及致病牙周致病菌可能通过破损的牙周上皮进入循环系统,侵入树突状细胞及单核细胞等免疫细胞并在其中存活,介导全身炎症反应;还可能经血液循环定植于心脏和大脑等重要器官,参与心脑血管疾病的发生发展[2];还可能随着呼吸进入呼吸系统,侵入并定植于呼吸道上皮细胞中,成为呼吸系统疾病的诱因[6];或是通过吞咽进入消化系统,改变肠道微生物群落组成,损伤肠道屏障功能并影响肠道免疫系统,介导肠道疾病的发生发展[7-8]。
牙周致病菌的毒力因子也是促进系统性疾病发生发展的重要因素。例如,LPS可以激活先天免疫途径,如toll样受体(TLR)信号通路,诱导下游合成炎症细胞因子及炎症介质,包括IL-6,IL-1β,TNF-α,前列腺素E2和基质金属蛋白酶,进一步破坏周围组织和细胞外基质;牙龈卟啉单胞菌能产生牙龈素等蛋白酶,灭活多种免疫球蛋白及细胞因子,逃避宿主的免疫防御机制;牙龈卟啉单胞菌和具核梭杆菌可诱导一种参与脂质代谢调节的关键脂肪因子——脂肪细胞型脂肪酸结合蛋白4的表达,促进动脉粥样硬化和2型糖尿病等多种系统性疾病的发展[4]。
2 牙周致病菌与系统性疾病的相关性 2.1 心血管疾病近年来,大量研究证实心血管疾病的发生发展与牙周致病菌密切相关。牙周致病菌可以逃避宿主免疫防御机制,通过血液循环到达并定植于动脉粥样硬化斑块及血栓中[10]。动脉粥样硬化斑块,动脉瘤壁和动脉瘤血栓组织中能够检测到多种牙周致病菌,如牙龈卟啉单胞菌,齿垢密螺旋体,伴放线聚集杆菌,福赛坦氏菌和中间普氏菌等[11-12]。
2.1.1 动脉粥样硬化牙周致病菌定植于血栓后可激发中性粒细胞胞外诱捕网等免疫防御机制[2],牙周致病菌还可以黏附于血管内膜上,与血管内膜之间发生交叉反应,产生抗体介导损伤,破坏血管内皮的功能,促进动脉粥样硬化的发生发展。斑马鱼模型中,牙龈卟啉单胞菌可以黏附并侵入主动脉及冠状动脉内皮细胞,导致心包水肿和心脏损伤,造成斑马鱼时间及剂量依赖性死亡[13-14]。牙龈卟啉单胞菌也通过菌毛侵入血管内皮细胞,上调一氧化氮合酶表达刺激内皮细胞释放大量一氧化氮,损伤内皮细胞,促进动脉粥样硬化发生[15]。牙周致病菌的含量及牙周炎的严重程度还能够影响血清LPS水平,而血清LPS水平与冠状动脉狭窄大于50%的风险成正比,LPS水平升高导致冠心病风险升高[16]。牙周致病菌的毒力因子也能促进动脉粥样硬化发展,如牙龈卟啉单胞菌的毒力因子精氨酸牙龈卟啉菌蛋白酶可诱导血小板聚集,选择性水解高密度脂蛋白的主要成分载脂蛋白B-100并导致脂蛋白脂质过氧化,加速动脉粥样硬化进程[17]。
2.1.2 腹主动脉瘤牙周致病菌与腹主动脉瘤也有密切关系。牙龈卟啉单胞菌可侵入动脉内皮细胞,进入动脉瘤壁和动脉瘤血栓,促进血栓中性粒细胞胞外诱捕网的形成,增大腹主动脉瘤腔内血栓体积,加快其进程。牙龈卟啉单胞菌LPS还可激活TLRs/NF-κB信号通路,加重动脉瘤壁内的炎症反应,加速腹主动脉瘤病程[2]。
2.2 糖尿病牙周炎与胰岛素抵抗、糖尿病的发生发展密切相关。牙周致病菌可以通过在牙周组织中的定植,促进炎症细胞因子产生,加重全身炎症反应促进糖尿病的发生发展。牙周致病菌如牙龈卟啉单胞菌能升高牙周组织中的TNF- α表达[18],TNF- α通过牙周组织进入循环系统后,减低机体对胰岛素的敏感性导致胰岛素抵抗[19]。牙周致病菌也能直接进入消化系统,改变肠道微生物群组成,影响糖尿病的发展。牙龈卟啉单胞菌能改变糖尿病小鼠肠道微生物组成,降低小鼠胰岛素敏感性降低,升高小鼠的空腹血糖[20]。牙龈卟啉单胞菌还能通过支链氨基酸合成通路,加重高脂饮食小鼠胰岛素抵抗[21]。此外,牙龈卟啉单胞菌的菌毛蛋白A(FimA)基因型的差异与2型糖尿病患者血糖控制有关,血糖控制差的患者口腔中黏附能力更强的FimAⅡ型牙龈卟啉单胞菌的检出率更高[22]。在牙周治疗后2型糖尿病患者的牙周袋中仍持续存在的牙龈卟啉单胞菌,尤其是FimAⅡ型牙龈卟啉单胞菌能影响血糖水平[23],早期检测牙龈卟啉单胞菌并适当使用多西环素进行治疗有助于2型糖尿病患者血糖的控制[24]。这些研究提示,牙周致病菌影响着糖尿病患者的血糖控制及疾病进程。
2.3 类风湿性关节炎类风湿性关节炎是一种以慢性炎症为特征的自身免疫性疾病,牙周炎与类风湿性关节炎有一些共同的致病机制,如由炎症细胞因子引起的慢性炎症,结缔组织分解和骨质流失等,牙周致病菌也参与类风湿性关节炎的致病[25]。牙周致病菌能进入循环系统,在组织器官中定植并引发自身免疫应答,从而促进类风湿性关节炎的发生。机体对瓜氨酸化蛋白的自身免疫应答是类风湿性关节炎的病理机制之一,抗瓜氨酸化蛋白抗体是一种检测类风湿性关节炎的特异性抗体,其血清水平与类风湿性关节炎的严重程度密切相关。牙龈卟啉单胞菌的肽酰基精氨酸脱亚胺酶能够瓜氨酸化蛋白质,产生抗原引发抗瓜氨酸化蛋白抗体应答,驱动类风湿性关节炎的发生发展[26]。伴放线聚集杆菌能激活宿主中性粒细胞瓜氨酸酶,产生自身抗原,促进类风湿性关节炎发病[27]。类风湿性关节炎患者的关节滑膜液中能检测到牙龈卟啉单胞菌,福赛坦氏菌和中间普氏菌等多种牙周致病菌,也提示牙周致病菌参与了类风湿性关节炎的发病[28-29]。
2.4 癌症 2.4.1 口腔鳞状细胞癌牙周致病菌能够促进口腔鳞状细胞癌的进展及转移。牙龈卟啉单胞菌和具核梭杆菌可以上调转录因子Snail和Twist的表达,下调E-钙粘蛋白表达,诱导上皮间充质转化[30]。具核梭杆菌能通过Ku70/p53途径损伤DNA,促进口腔鳞状细胞癌细胞增殖[31]。牙龈卟啉单胞菌可以抑制p53信号通路,抑制上皮细胞凋亡并促进癌细胞增殖[32],也可激活Jak1/Akt/ Stat3信号通路抑制内在线粒体凋亡[33]。牙龈卟啉单胞菌还可以激活ERK1/2-ETS1、p38/HSP27和PAR2/NF-kB通路,诱导pro-MMP9表达,促进口腔鳞状细胞癌细胞侵袭[34]。
2.4.2 消化道肿瘤牙周致病菌与消化道肿瘤也具有一定相关性。定植于大肠组织中的具核梭杆菌可以作为大肠癌诊断和预后的标志物,且与其发生、转移密切相关[35-36]。具核梭杆菌可以改变小鼠肠道微生物构成,促进肠道炎症微环境,还能增加肿瘤多样性以及选择性募集髓样细胞,促进肠道肿瘤的进展[37-38]。具核梭杆菌还可以通过其毒力因子FadA粘附素与E-钙粘连蛋白结合,激活E-钙粘连蛋白/β-连环蛋白信号通路,促进癌细胞生长[38],转移性大肠癌患者的癌组织中具核梭杆菌含量与总体生存率呈负相关[39]。研究也表明,口腔中大量存在的牙龈卟啉单胞菌与胰腺癌和食管癌的发生有关[40],福赛坦氏菌,齿垢密螺旋体和伴放线聚集杆菌等牙周致病菌的定植增加可能增加胃癌前病变的风险[41]。
2.5 呼吸道感染性疾病牙齿表面的菌斑生物膜是呼吸道感染的病原体贮藏库,牙周致病菌可被吸入呼吸道,定植并引起呼吸道炎症,成为呼吸道感染的危险因素,也是吸入性肺炎的主要病因之一[6]。被吸入呼吸道的牙龈卟啉单胞菌、具核梭杆菌和伴放线聚集杆菌可以促进铜绿假单胞菌侵入呼吸道上皮细胞,促使细胞因子产生及细胞凋亡[42]。来自牙周组织的炎症细胞因子可进入呼吸道,损伤呼吸道上皮并促进呼吸道病原体定植[43]。牙周致病菌的毒力因子蛋白酶也可进入呼吸道,阻碍呼吸道粘膜清除粘附于粘膜表面的呼吸道病原体,促进呼吸道病原体的粘附和定植[43]。牙龈卟啉单胞菌的牙龈素能加重宿主的免疫反应,引起过度炎症反应,造成支气管肺炎,肺部脓肿、出血甚至坏死[44]。研究表明,慢性阻塞性肺疾病口腔中牙龈卟啉单胞菌的含量增高,且与第1秒用力呼气容积占预计值的百分比(FEV1%)呈负相关,提示口腔中牙龈卟啉单胞菌的含量增高能减弱肺功能[45]。除牙龈卟啉单胞菌外,中间普氏菌和伴放线聚集杆菌也可能引起肺炎和肺脓肿[46]。
2.6 不良妊娠结局牙周致病菌可以通过两种机制对妊娠造成不良影响:一为牙周致病菌直接通过循环系统,进入胎盘到达羊水及胎儿体内;二为牙周组织的炎症介质进入循环系统并在肝脏中引起急性期反应,为胎盘和胎儿带来负面影响[47]。通过这两种方式,牙周致病菌可能引起孕妇胎盘组织的炎症反应,升高羊水中前列腺素E2和TNF-α水平,导致早产。研究发现早产者龈下菌斑中牙龈卟啉单胞菌,福赛坦氏菌,齿垢密螺旋体,中间普氏菌和伴放线聚集杆菌等多种牙周致病菌含量均高于足月分娩患者,早产者产后牙周致病菌含量增加,而足月分娩者产后其含量趋于稳定[48-49]。另一项研究表明,年轻孕妇牙周袋中牙周致病菌的存在与低出生体质量患儿有关,足月分娩正常儿的孕妇口腔内中间普氏菌和伴放线聚集杆菌的检出率明显降低[50]。妊娠前或妊娠期间通过干预改善牙周健康,可以有效预防或减少不良妊娠结局的发生,降低孕产妇和围产儿的发病率和死亡率[51]。
2.7 阿尔茨海默病阿尔茨海默病是一种神经退行性疾病,神经炎症为其重要的发病因素之一。牙周致病菌引起的外周感染可能影响中枢神经系统的炎症状态。牙周致病菌及炎症介质还可能通过血脑屏障进入脑内,引起局部免疫反应,影响阿尔茨海默病程发展[52]。牙龈卟啉单胞菌LPS可以进入脑组织中并上调大脑皮层的炎症细胞因子(TNF-α、IL-1β、IL-6和IL-8)的表达,激活TLR4/NF-κB信号通路,导致小鼠的学习和记忆障碍[53]。牙周致病菌的毒力因子丁酸能激发血液中氧化应激并导致全身炎症反应,进一步激发大脑内氧化应激和内质网应激,诱导小脑和大脑海马区等各个大脑区域的钙信号和细胞死亡信号传导[54]。一项研究表明,在认知障碍发生的前几年,受试者血清中抗牙周致病菌的相关抗体升高,提示牙周炎可能诱导阿尔茨海默的发病[55]。但也有研究表明,对于年龄在70岁以下的痴呆症患者,牙周致病菌可能并不是阿尔茨海默的诱因[52]。牙周致病菌与神经退行性疾病的相关性尚需进一步研究。
2.8 系统性红斑狼疮系统性红斑狼疮的发病与菌群失调有关。系统性红斑狼疮患者的龈下微生物多样性较低,其中大量牙周致病菌(如牙龈卟啉单胞菌,齿垢密螺旋体和伴放线聚集杆菌)在微生态中占据了主导地位,而牙周正常菌群减少。增多的牙周致病菌能加重全身炎症反应,上调血液中炎症细胞因子水平,促进系统性红斑狼疮的发生[56-57]。龈下菌群的变化还可能影响系统性红斑狼疮的活动性和严重性,如研究发现系统性红斑狼疮患者血清中抗伴放线聚集杆菌抗体的含量与疾病的活动性呈正相关[56],对系统性红斑狼疮患者进行牙周治疗能够改善系统性红斑狼疮免疫抑制治疗的疗效,降低疾病的活动性[58]等。这些研究提示牙周致病菌和系统性红斑狼疮之间存在一定的相关性,但其机制尚需进一步阐明。
2.9 慢性肾病牙周致病菌可以促进一些与内皮功能障碍相关的炎症细胞因子的释放,加重全身炎症反应,从而诱导肾脏炎症,成为慢性肾病的诱因[59]。牙周病致病菌可以在肾脏细胞内存活、定植,释放炎症细胞因子,激活髓系细胞表达的触发受体1及其配体肽聚糖识别蛋白1表达,促使肾脏血管形成动脉粥样硬化斑块[60]。研究表明,抗牙周病原体的血清IgG抗体水平升高与肾功能不全相关[61]。慢性肾病患者龈下菌斑中牙龈卟啉单胞菌,齿垢密螺旋体和福赛坦氏菌的检出率较健康对照增多[62]。
2.10 炎症性肠病炎症性肠病与口腔疾病有着密切的联系。早在1945年,Bergen证明了一类存在于牙齿病灶中的细菌——非溶血性链球菌可以引起结肠炎,清除牙齿病灶并给病人注射适量的自体疫苗后,结肠炎会快速消退[63]。炎症性肠病常有明显的肠道外临床表现,其中口腔溃疡和牙龈炎等口腔疾病的患病率为20%~50%不等[64]。肠道菌群失调在炎症性肠病的发病机制中起了重要的作用,在炎症性肠病患者肠道中可检测到大量更具有侵袭性的具核梭杆菌[65]。炎症性肠病是大肠癌的危险因素,而具核梭杆菌在肠道中的感染可能是这两种疾病共同的发病机制[66]。炎症性肠病患者牙周病的风险显著增加,且在口腔卫生情况相似的情况下,炎症性肠病患者表现出更严重的牙周症状[67-69]。这些研究提示牙周致病菌与炎症性肠病存在相关性。
3 小结越来越多的研究表明,牙周致病菌会对机体健康造成多种直接或间接的影响。牙周致病菌可能引起菌血症及全身炎症,破坏体内微生物稳态,积极控制炎症则可以使微生物群落向相对健康的方向转变,恢复全身与牙周的动态平衡。维护牙周健康可以有效的降低系疾病的发生发展,提高生活质量。
[1] |
Zambon JJ. Periodontal diseases: microbial factors[J]. Ann Periodontol, 1996, 1(1): 879-925. |
[2] |
Salhi L, Rompen E, Sakalihasan N, et al. Can periodontitis influence the progression of abdominal aortic aneurysm? A systematic review[J]. Angiology, 2019, 70(6): 479-91. |
[3] |
Polepalle T, Moogala S, Boggarapu S, et al. Acute phase proteins and their role in periodontitis: a review[J]. J Clin Diagn Res, 2015, 9(11): ZE01-5. |
[4] |
Winning L, Patterson CC, Cullen KM, et al. The association between subgingival periodontal pathogens and systemic inflammation[J]. J Clin Periodontol, 2015, 42(9): 799-806. |
[5] |
Liu DW, Wang XQ, Chen ZW. Tumor necrosis factor-α, a regulator and therapeutic agent on breast cancer[J]. Curr Pharm Biotechnol, 2016, 17(6): 486-94. |
[6] |
Heo SM, Sung RS, Scannapieco FA, et al. Genetic relationships between Candida albicans strains isolated from dental plaque, trachea, and bronchoalveolar lavage fluid from mechanically ventilated intensive care unit patients[J]. J Oral Microbiol, 2011, 3. DOI:10.3402/jom.v3i0.6362 |
[7] |
Lourenςo TGB, Spencer SJ, Alm EJ, et al. Defining the gut microbiota in individuals with periodontal diseases: an exploratory study[J]. J Oral Microbiol, 2018, 10(1): 1487741. |
[8] |
Kato T, Yamazaki K, Nakajima M, et al. Oral administration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome[J]. mSphere, 2018, 3(5): e00460-18. |
[9] |
Kim DJ, Rho JH, Woo BH, et al. Periodontal pathogens modulate lipid flux via fatty acid binding protein 4[J]. J Dent Res, 2019, 98(13): 1511-20. |
[10] |
Carrion J, Scisci E, Miles B, et al. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential[J]. J Immunol, 2012, 189(6): 3178-87. |
[11] |
Kannosh I, Staletovic D, Toljic B, et al. The presence of perio-pathogenic bacteria in subgingival and atherosclerotic plaques-An age related comparative analysis[J]. J Infect Dev Ctries, 2018, 12(12): 1088-95. |
[12] |
Rath SK, Mukherjee M, Kaushik R, et al. Periodontal pathogens in atheromatous plaque[J]. Indian J Pathol Microbiol, 2014, 57(2): 259-64. |
[13] |
Miyamoto T, Yumoto H, Takahashi Y, et al. Pathogen-accelerated atherosclerosis occurs early after exposure and can be prevented via immunization[J]. Infect Immun, 2006, 74(2): 1376-80. |
[14] |
Widziolek M, Prajsnar TK, Tazzyman S, et al. Zebrafish as a new model to study effects of periodontal pathogens on cardiovascular diseases[J]. Sci Rep, 2016, 6: 36023. |
[15] |
Sun W, Wu J, Lin L, et al. Porphyromonas gingivalis stimulates the release of nitric oxide by inducing expression of inducible nitric oxide synthases and inhibiting endothelial nitric oxide synthases[J]. J Periodont Res, 2010, 45(3): 381-8. |
[16] |
Liljestrand JM, Paju S, Buhlin K, et al. Lipopolysaccharide, a possible molecular mediator between periodontitis and coronary artery disease[J]. J Clin Periodontol, 2017, 44(8): 784-92. |
[17] |
Hashimoto M, Kadowaki T, Tsukuba T, et al. Selective proteolysis of apolipoprotein B-100 by Arg-gingipain mediates atherosclerosis progression accelerated by bacterial exposure[J]. J Biochem, 2006, 140(5): 713-23. |
[18] |
裴心佛, 孟姝, 苟册, 等. 高迁移率族蛋白B1在糖尿病伴牙周炎患者牙周组织中的表达及与肝脏脂代谢的关系[J]. 南方医科大学学报, 2020, 40(1): 6-12. |
[19] |
Grossi SG. Treatment of periodontal disease and control of diabetes: an assessment of the evidence and need for future research[J]. Ann Periodontol, 2001, 6(1): 138-45. |
[20] |
Ohtsu A, Takeuchi Y, Katagiri S, et al. Influence of Porphyromonas gingivalis in gut microbiota of streptozotocin-induced diabetic mice[J]. Oral Dis, 2019, 25(3): 868-80. |
[21] |
Tian J, Liu C, Zheng X, et al. Porphyromonas gingivalis induces insulin resistance by increasing BCAA levels in mice[J]. J Dent Res, 2020, 22034520911037. |
[22] |
杨炳涛, 徐菁玲, 和璐, 等. 伴糖尿病牙周炎患者牙龈卟啉单胞菌FimA基因型的检测[J]. 中华口腔医学杂志, 2016, 51(1): 20-4. |
[23] |
Makiura N, Ojima M, Kou Y, et al. Relationship of Porphyromonas gingivalis with glycemic level in patients with type 2 diabetes following periodontal treatment[J]. Oral Microbiol Immunol, 2008, 23(4): 348-51. |
[24] |
Radhakrishnan P, Anbalagan R, Barani R, et al. Sequencing of Porphyromonas gingivalis from saliva in patients with periodontitis and type 2 diabetes mellitus[J]. Indian J Med Microbiol, 2019, 37(1): 54-9. |
[25] |
Zhao XY, Liu ZJ, Shu DL, et al. Association of periodontitis with rheumatoid arthritis and the effect of non-surgical periodontal treatment on disease activity in patients with rheumatoid arthritis[J]. Med Sci Monit, 2018, 24: 5802-10. |
[26] |
Wegner N, Wait R, Sroka A, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis[J]. Arthritis Rheum, 2010, 62(9): 2662-72. |
[27] |
Konig MF, Abusleme L, Reinholdt J, et al. Aggregatibacter actino-mycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis[J]. Sci Transl Med, 2016, 8(369): 369ra176. |
[28] |
Moen K, Brun JG, Valen M, et al. Synovial inflammation in active rheumatoid arthritis and psoriatic arthritis facilitates trapping of a variety of oral bacterial DNAs[J]. Clin Exp Rheumatol, 2006, 24(6): 656-63. |
[29] |
Reichert S, Haffner M, Keyßer G, et al. Detection of oral bacterial DNA in synovial fluid[J]. J Clin Periodontol, 2013, 40(6): 591-8. |
[30] |
Abdulkareem AA, Shelton RM, Landini G, et al. Periodontal pathogens promote epithelial-mesenchymal transition in oral squamous carcinoma cells in vitro[J]. Cell Adh Migr, 2018, 12(2): 127-37. |
[31] |
Geng FX, Zhang YJ, Lu Z, et al. Fusobacterium nucleatum caused DNA damage and promoted cell proliferation by the Ku70/p53 pathway in oral cancer cells[J]. DNA Cell Biol, 2020, 39(1): 144-51. |
[32] |
Kuboniwa M, Hasegawa Y, Mao S, et al. P. gingivalis accelerates gingival epithelial cell progression through the cell cycle[J]. Microbes Infect, 2008, 10(2): 122-8. |
[33] |
Li Q, Pan CL, Teng D, et al. Porphyromonas gingivalis modulates Pseudomonas aeruginosa-induced apoptosis of respiratory epithelial cells through the STAT3 signaling pathway[J]. Microbes Infect, 2014, 16(1): 17-27. |
[34] |
Inaba H, Sugita H, Kuboniwa M, et al. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation[J]. Cell Microbiol, 2014, 16(1): 131-45. |
[35] |
Li YY, Ge QX, Cao J, et al. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients[J]. World J Gastroenterol, 2016, 22(11): 3227-33. |
[36] |
Gethings-Behncke C, Coleman HG, Jordao HWT, et al. Fuso-bacterium nucleatum in the colorectum and Its association with cancer risk and survival: a systematic review and meta-analysis[J]. Cancer Epidemiol Biomarkers Prev, 2020, 29(3): 539-48. |
[37] |
Yu YN, Yu TC, Zhao HJ, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment[J]. Oncotarget, 2015, 6(31): 32013-26. |
[38] |
Rubinstein MR, Wang XW, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206. |
[39] |
Lee DW, Han SW, Kang JK, et al. Association between Fusobacterium nucleatum, pathway mutation, and patient prognosis in colorectal cancer[J]. Ann Surg Oncol, 2018, 25(11): 3389-95. |
[40] |
Michaud DS. Role of bacterial infections in pancreatic cancer[J]. Carcinogenesis, 2013, 34(10): 2193-7. |
[41] |
Sun JH, Zhou M, Salazar CR, et al. Chronic periodontal disease, periodontal pathogen colonization, and increased risk of precancerous gastric lesions[J]. J Periodontol, 2017, 88(11): 1124-34. |
[42] |
Pan YP, Teng D, Burke AC, et al. Oral bacteria modulate invasion and induction of apoptosis in HEp-2 cells by Pseudomonas aeruginosa[J]. Microb Pathog, 2009, 46(2): 73-9. |
[43] |
Bansal M, Khatri M, Taneja V. Potential role of periodontal infection in respiratory diseases-a review[J]. J Med Life, 2013, 6(3): 244-8. |
[44] |
Benedyk M, Mydel PM, Delaleu N, et al. Gingipains: critical factors in the development of aspiration pneumonia caused by Porphyromonas gingivalis[J]. J Innate Immun, 2016, 8(2): 185-98. |
[45] |
Tan LS, Tang XL, Pan CL, et al. Relationship among clinical periodontal, microbiologic parameters and lung function in participants with chronic obstructive pulmonary disease[J]. J Periodontol, 2019, 90(2): 134-40. |
[46] |
Scannapieco FA, Mylotte JM. Relationships between periodontal disease and bacterial pneumonia[J]. J Periodontol, 1996, 67(Suppl 10S): 1114-22. |
[47] |
Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nature reviews[J]. Immunology, 2015, 15(1): 30-44. |
[48] |
Andonova I, Iliev V, Živković N, et al. Can oral anaerobic bacteria cause adverse pregnancy outcomes?[J]. Pril (Makedon Akad Nauk Umet Odd Med Nauki), 2015, 36(1): 137-43. |
[49] |
Lin DM, Moss K, Beck JD, et al. Persistently high levels of periodontal pathogens associated with preterm pregnancy outcome[J]. J Periodontol, 2007, 78(5): 833-41. |
[50] |
Usin MM, Menso J, Rodriguez VI, et al. Association between maternal periodontitis and preterm and/or low birth weight infants in normal pregnancies[J]. J Matern-Fetal Neonatal Med, 2016, 29(1): 115-9. |
[51] |
Parihar AS, Katoch V, Rajguru SA, et al. Periodontal disease: a possible risk-factor for adverse pregnancy outcome[J]. J Int Oral Health, 2015, 7(7): 137-42. |
[52] |
Laugisch O, Johnen A, Maldonado A, et al. Periodontal pathogens and associated intrathecal antibodies in early stages of Alzheimer's disease[J]. J Alzheimers Dis, 2018, 66(1): 105-14. |
[53] |
Zhang J, Yu CB, Zhang X, et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice[J]. J Neuroinflammation, 2018, 15(1): 37. |
[54] |
Cueno ME, Ochiai K. Gingival periodontal disease (PD) level-butyric acid affects the systemic blood and brain organ: insights into the systemic inflammation of periodontal disease[J]. Front Immunol, 2018, 9: 1158. |
[55] |
Sparks Stein P, Steffen MJ, Smith C, et al. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer's disease[J]. Alzheimers Dement, 2012, 8(3): 196-203. |
[56] |
Pessoa L, Aleti G, Choudhury S, et al. Host-microbial interactions in systemic lupus erythematosus and periodontitis[J]. Front Immunol, 2019, 10: 2602. |
[57] |
Corrêa JD, Calderaro DC, Ferreira GA, et al. Subgingival microbiota dysbiosis in systemic lupus erythematosus: association with periodontal status[J]. Microbiome, 2017, 5(1): 34. |
[58] |
Fabbri C, Fuller R, Bonfá E, et al. Periodontitis treatment improves systemic lupus erythematosus response to immunosuppressive therapy[J]. Clin Rheumatol, 2014, 33(4): 505-9. |
[59] |
Almeida S, Figueredo CM, Lemos C, et al. Periodontal treatment in patients with chronic kidney disease: a pilot study[J]. J Periodont Res, 2017, 52(2): 262-7. |
[60] |
Chopra A, Sivaraman K. An update on possible pathogenic mechanisms of periodontal pathogens on renal dysfunction[J]. Crit Rev Microbiol, 2019, 45(5/6): 514-38. |
[61] |
Kshirsagar AV, Offenbacher S, Moss KL, et al. Antibodies to periodontal organisms are associated with decreased kidney function. The dental atherosclerosis risk in communities study[J]. Blood Purif, 2007, 25(1): 125-32. |
[62] |
Bastos JA, Diniz CG, Bastos MG, et al. Identification of periodontal pathogens and severity of periodontitis in patients with and without chronic kidney disease[J]. Arch Oral Biol, 2011, 56(8): 804-11. |
[63] |
Lakner L. The problem of oral infection and its relation to systemic diseases[J]. Edinb Med J, 1945, 52: 366-72. |
[64] |
Katsanos KH, Torres J, Roda G, et al. Review article: non-malignant oral manifestations in inflammatory bowel diseases[J]. Aliment Pharmacol Ther, 2015, 42(1): 40-60. |
[65] |
Ozmeric N, Bissada N, da Silva APB. The association between inflammatory bowel disease and periodontal conditions: is there a common bacterial etiology[J]. J Int Acad Periodontol, 2018, 20(2): 40-51. |
[66] |
Han YW, Wang X. Mobile microbiome: oral bacteria in Extra-oral infections and inflammation[J]. J Dent Res, 2013, 92(6): 485-91. |
[67] |
Tan CX, Brand HS, de Boer NK, et al. Gastrointestinal diseases and their oro-dental manifestations: Part 2: Ulcerative colitis[J]. Br Dent J, 2017, 222(1): 53-7. |
[68] |
Papageorgiou SN, Hagner M, Nogueira AV, et al. Inflammatory bowel disease and oral health: systematic review and a meta-analysis[J]. J Clin Periodontol, 2017, 44(4): 382-93. |
[69] |
Koutsochristou V, Zellos A, Dimakou K, et al. Dental caries and periodontal disease in children and adolescents with inflammatory bowel disease: a case-control study[J]. Inflamm Bowel Dis, 2015, 21(8): 1839-46. |