2. 中山大学附属第三医院骨科,广东 广州 510630;
3. 中山医学院人体解剖学教研室,广东 广州 510080
2. Department of Orthopedics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China;
3. Department of Human Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
骨关节炎是最常见的骨骼肌肉系统疾病,好发于老年人,60岁以上人群的发病率超过50%、75岁以上人群的患病率约为80%。疼痛是骨关节炎最主要的临床症状,也是其危害人类健康和影响患者劳动能力的主要因素。然而,由于人类对骨关节炎疼痛的发病机制所知甚少,目前缺乏有效的治疗和控制骨关节炎疼痛的措施。非甾体类抗炎药[1-2]和阿片类药物对减轻骨关节炎疼痛具有一定的效果[3],但长期使用药物治疗的副作用极大。手术对于减轻晚期骨关节炎患者的疼痛效果良好,但手术本身会给患者带来痛苦并增加了经济负担。因此,研究骨关节炎疼痛的发病机制、探索其预防和治疗的可能靶点,具有一定的临床价值。
目前普遍认为,骨关节炎疼痛是由组织损伤和神经病理性机制驱动而引发的外周和中枢痛觉敏化,具有神经病理性疼痛(NP)的特征[4-6]。研究表明,背根神经节(DRG)神经元电压门控离子通道的表达改变和功能变化是引起NP疼痛敏化的重要发病机制[7-9]。此外,DRG神经元的电压门控钠离子通道表达变化和功能改变参与骨关节炎疼痛的外周敏化[10]。那么决定着动作电位的发放频率和幅度的电压门控钾离子(Kv)通道是否参与骨关节炎疼痛的发病机制尚无报道。有报道,Kv亚家族Kv1的亚基Kv1.2(即KCNA2)表达下调和功能障碍是NP的重要发病机制之一[8, 11],但尚不清楚KCNA2在骨关节炎模型动物DRG中的表达情况。我们旨在研究DRG神经元KCNA2的表达变化及可能机制,为进一步探索骨关节炎疼痛的发病机制提供理论依据。
1 材料和方法 1.1 主要试剂和仪器试剂:碘乙酸钠(Macklin);HE染色试剂盒(碧云天生物技术研究所);番红固绿染色试剂盒(北京百奥莱博科技有限公司);Trizol RNA提取试剂盒、Roche荧光定量试剂盒、ECL显色试剂盒及驴抗兔二抗购自Thermo Fisher;逆转录试剂盒(Takara);Kcna2 mRNA引物(北京睿博兴科生物技术有限公司);KCNA2多克隆抗体、兔抗大鼠活化转录因子-3(ATF-3)、兔抗大鼠诱生型一氧化氮合酶(iNOS)及小鼠抗大鼠NeuN购自GeneTex;辣根过氧化物酶缀合的山羊抗兔二抗(ZSGB Bio);山羊抗小鼠二抗(Abcam)。DNA提取试剂盒、重亚硫酸盐转化试剂盒、琼脂糖DNA凝胶回收试剂盒均购自北京天根生化科技有限公司;质粒提取试剂盒(上海捷瑞生物工程有限公司);Taq酶(TAKARA);PMD18-T(TaKaRa);大肠杆菌DH5(武汉天一辉远生物科技有限公司)。仪器:von-Frey丝(Ugo Basile,Aesthesio型);石蜡切片机(Leica,RM2245型);冰冻切片机(Leica,CM1860型);显微镜(Nikon,TS100型);紫外分光光度仪(Biotek,ELx800型);PCR反应仪(BIO-RAD,T100型);激光共聚焦显微镜(Leica,TCS SP8型);低温高速离心机(Thermo,D-37520型);基因扩增仪(杭州博日科技有限公司,TC-XP-D型);基因测序仪(ABI,3730XL型)。
1.2 动物与分组156只清洁级雄性SD大鼠,由广东省实验动物中心提供(实验动物合格号:No.44007200052028),7~8周龄,体质量230~270 g,随机平均分为3组:空白对照组(C组)、生理盐水组(S组)和骨关节炎组(OA)组。
1.3 大鼠骨关节炎模型的建立参考文献[6, 12-13],腹腔注射6%戊巴比妥钠(体质量×0.01 mL/kg)麻醉大鼠,剃除大鼠左膝关节处毛发,医用碘酊消毒后75%酒精脱碘2遍,膝关节屈曲45°,自髌骨下韧带外侧进行关节腔穿刺,进针达股骨髁后回退2 mm,OA组注射8%碘乙酸钠2 mg(溶于生理盐水50 μL),S组注射等容积生理盐水,C组只穿刺不注射。保持室温25~27 ℃,让大鼠自由活动并摄取充足的水及食物。
1.4 观察指标 1.4.1 机械刺激缩足反应阈值的测定参考文献[8, 12],每组12只大鼠分别于注射前1 d及注射后1、2、4、6周置于金属网上,外罩透明有机玻璃箱,让大鼠适应环境30 min,室温控制在25±1 ℃。以不同折力(依次为2,4,6,8,10,15,26,60 g)的von-Frey丝垂直刺激大鼠左足底中部,持续时间≤4 s,大鼠出现抬足或舔足行为视为阳性反应,30 s后给予下一级力度的刺激;若为阴性反应则30 s后给予上一级力度的刺激。如此连续进行,直至出现第1次阳性和阴性反应的骑跨,每个折力的纤维细丝均连续测定5次,每次间隔30 s,将出现3次或以上阳性反应的值记为大鼠的机械刺激缩足反应阈值(PWMT)。
1.4.2 HE染色及番红-固绿染色观察关节病理学变化4周后每组随机选取6只大鼠,取关节组织放于4%多聚甲醛固定48 h,再置于EDTA液中脱钙,每3 d更换1次液体,2周后进行石蜡包埋,切成8 μm厚的石蜡切片备用。取上述石蜡切片脱蜡、水化后进行染色。HE染色:苏木精染液10 min,流水冲洗后1%盐酸酒精分化5~ 10 s,冲洗后加入伊红染液1~3 min;番红-固绿染色:苏木素染液5 min,流水冲洗,盐酸酒精分化5~10 s,冲洗后加固绿溶液3 min,1%醋酸液快速漂洗10~15 s,加番红染液2~3 min。所有切片脱水、透明后封片,显微镜下观察。
1.4.3 免疫荧光染色分析DRG神经元ATF-3与iNOS的表达每组选4只大鼠,4周后处死,迅速剪开大鼠胸腔,左心室插灌注针、剪开右心房,灌注4%多聚甲醛固定,取大鼠左侧L3~5节段DRG做冰冻切片,将切片室温下复温30 min后用4%多聚甲醛4 ℃下固定20 min,含5%山羊血清、0.2%Triton X-100破膜液室温下封闭破膜2 h,滴加相应一抗、4 ℃过夜,次日取出切片、漂洗后滴加相应荧光二抗、室温孵育2 h,Hoechst 33342染色10 min。封片后用共聚焦显微镜观测,神经元呈绿色、ATF3与iNOS呈红色,使用Image J软件进行图像分析。
1.4.4 RT-qPCR检测Kcna2 mRNA每组选4只大鼠,分别于1、2、4、6周后取大鼠左侧L3~5节段DRG组织加入1mL Trizol后磨碎组织,分别经沉淀、洗涤、再溶解后提取出RNA。紫外分光光度法测定RNA的浓度及纯度。按试剂盒说明将RNA逆转录成为cDNA。使用Roche荧光定量试剂盒扩增cDNA。Kcna2上游引物:CCCATCTGCAAGGGCAACGT;下游引物:CACAG CCTCCTTTGGCTGGC。相对于GAPDH基因的2-ΔΔCt方法计算基因表达量,2-ΔΔCt>2或 < 1/2被认为具有统计学意义。
1.4.5 Western blot检测KCNA2的表达每组选4只大鼠,取大鼠左侧L3~5节段DRG组织,双蒸水冲洗后放入-80 ℃冰箱保存。取出上述DRG组织,剪碎后加组织裂解液,冰上充分匀浆、裂解,转移至EP管后4 ℃ 12 000 r/min离心30 min。取上清液,BCA法测定蛋白浓度并配平,加入SDS-PAGE蛋白上样缓冲液(5×),沸水中变性10 min,放入-20 ℃冰箱中备用。按照试剂盒说明配置好聚丙烯酰胺凝胶,装入电泳槽中,注入电泳缓冲液,取等量蛋白样本进行电泳,蛋白分离后再转移至聚偏二氟乙烯膜上,5%脱脂奶粉室温封闭1 h,滴加一抗、4 ℃孵育过夜,取出后漂洗,滴加辣根过氧化物酶缀合的二抗,室温下孵育2 h,ECL法显色,曝光后使用Image J软件分析光密度值。
1.4.6 甲基化PCR测定Kcna2启动子区域的甲基化水平每组另取4只大鼠,取4周后左侧L3~5节段DRG组织,加入组织消化液GHA和蛋白激酶K,消化至溶液清亮。按照磁珠法提取DNA试剂盒说明提取DNA。紫外分光光度法测定DNA的浓度和纯度,1%琼脂糖电泳观察DNA的条带情况。取出DNA样本,按试剂盒说明配制重亚硫酸盐反应体系,然后置于PCR仪进行修饰,再纯化、回收。取上述DNA样本,放入预配置的反应体系中扩增。巢式扩增引物序列:(1)正向为TTTGTT TTTTTTATTTGGTTGG,反向为TAACTTCCRAACT AATCCCC;(2)正向为AAGAGGAAGTTAGATTTG GGGTA,反向为AAAAATCTAAACCCTATCCCAT。将PCR产物进行琼脂糖电泳,再捣碎凝胶,经DNA纯化柱纯化回收DNA。取PCR产物与PMD18-T载体进行连接,将连接产物转化至预制备的感受态细胞(大肠杆菌dh5)中。取未离心菌液、离心后的上清液与沉淀分别涂布含氨苄青霉素的LB固体平板,37 ℃倒置培养12 h。将细菌裂解,纯化回收。按试剂盒说明进行预测序反应和测序扩增,然后上机分析。
1.5 统计学处理采用SPSS 19.0与Excel 2010软件进行数据处理,数据以均数±标准差表示。重复测量的数据采用重复测量数据方差分析,组间比较采用multivariate analysis、组内不同时点之间的比较采用LSD法;其余数据采用单因素方差分析,组间比较采用LSD或Dunnett's T3法。P < 0.05表示差异有统计学意义。
2 结果 2.1 3组大鼠PWMT变化与注射前相比,OA组2、4、6周PWMT显著降低〔(10.58±2.94、7.75±3.57、7.92±3.09)g vs(16.08±6.39)g,P < 0.05或P < 0.001〕,且4周后PWMT降至最低并一直持续至6周,而其他两组大鼠PWMT注射前后没有明显变化。此外,C组和S组注射后2、4、6周PWMT分别为(15.17±5.57、15.00±5.77)g、(15.00±5.77、14.67±4.21)g和(14.75±5.77、14.75±5.77)g;与OA组相比,差异有统计学意义(P < 0.05或P < 0.001,图 1)。
![]() |
图 1 三组大鼠PWMT比较 Fig.1 Comparison of PWMT among the 3 groups. Group C: blank control group; Group S: saline group; Group OA: osteoarthritis model group. *P < 0.05, **P < 0.001 vs group C and group S; #P < 0.05, ##P < 0.001 vs baseline in group OA; △ P < 0.05, △ △ P < 0.01 vs 1 week after injection in group OA(Mean±SD, n=12) |
C组及S组大鼠关节软骨表面光滑完整,关节软骨透亮清晰,基质内蛋白多糖红染均匀,软骨下皮质骨和骨小梁骨均匀绿染,潮线清晰可见,无骨质增生;OA组大鼠关节软骨表面粗糙、断裂、缺损,部分软骨下骨暴露,软骨层番红固绿染色淡且范围小,骨质增生明显且结构杂乱,潮线模糊不清(图 2)。
![]() |
图 2 3组大鼠膝关节病理变化 Fig.2 Pathological changes of the knee joints (Original magnification: ×40). A: HE staining; B: Safranin O-Fast Green staining. Group C: blank control group; Group S: saline group; Group OA: osteoarthritis model group |
选择大鼠疼痛行为学变化最显著时(4周)通过免疫荧光双标检测大鼠DRG神经元ATF-3和iNOS的表达与分布,结果显示:3组大鼠DRG神经元呈绿色,ATF-3、iNOS分别呈红色,ATF-3与iNOS均表达于DRG神经元的胞浆内。C、S和OA组ATF-3的光密度值分别为7.88±1.47、8.24±1.43和13.22±1.74,iNOS的光密度值分别为8.50±1.66、7.93±1.56和20.12±5.21,OA组ATF-3和iNOS的表达水平显著高于其余两组(P < 0.01),而S组与C组的ATF-3、iNOS表达差异无统计学意义(P>0.05,图 3)。
![]() |
图 3 3组大鼠DRG神经元ATF-3、iNOS的表达 Fig.3 Expression of ATF-3 and iNOS in the DRG neurons of rats in the 3 groups. Group C: blank control group; Group S: saline group; Group OA: osteoarthritis model group. A: Double immunofluorescence staining of ATF-3 and iNOS in the DRG (×200); B: IOD of ATF-3 and iNOS. *P < 0.01 vs group C and group S (Mean±SD, n=4) |
OA组大鼠2、4、6周Kcna2 mRNA表达水平均显著低于C和S组([0.77 ± 0.12、0.56 ± 0.08、0.58 ± 0.12)vs(1.00±0.00、1.00±0.00、1.00±0.00),P < 0.05或P < 0.01)和(0.97 ± 0.17、0.96 ± 0.16、0.96 ± 0.15),P < 0.05或P < 0.01)],C、S两组Kcna2 mRNA表达差异无统计学意义(P>0.05)。进一步分析OA组大鼠Kcna2 mRNA的表达情况,结果显示,2、4、6周比1周时Kcna2 mRNA表达水平显著降低([0.76 ± 0.10、0.56 ± 0.13、0.57 ± 0.11)vs 1.00±0.00,P < 0.05或P < 0.01],4、6周时Kcna2 mRNA表达差异无统计学差异(P>0.05,图 4)。
![]() |
图 4 大鼠DRG神经元Kcna2 mRNA表达 Fig.4 Expression of Kcna2 mRNA in DRG neurons of the rats. Group C: blank control group; Group S: saline group; Group OA: osteoarthritis model group. A: Comparison of Kcna2 mRNA among the 3 groups at different time points. *P < 0.05, **P < 0.01 vs group C; #P < 0.05, ##P < 0.01 vs group S; B: Comparison of Kcna2 mRNA across different time points in group OA. △P < 0.01 vs 1 week after injection; ▲P < 0.05 vs 2 week after injection (Mean±SD, n=4) |
关节腔注射4周时(Kcna2 mRNA表达最低),取DRG测定KCNA2的表达,结果显示,OA组KCNA2表达明显低于其余两组(P < 0.05或P < 0.01),而C、S两组间差异无统计学意义(P>0.05,图 5)。
![]() |
图 5 3组大鼠DRG神经元KCNA2的表达 Fig.5 Expression of KCNA2 in DRG neurons of rats in the 3 groups. Group C: blank control group; Group S: saline group; Group OA: osteoarthritis model group. A: Expression of KCNA2 in DRG measured by Western blotting at 4 weeks after injection; B: IOD of KCNA2. *P < 0.01 vs group C; #P < 0.05 vs group S (Mean±SD, n=4) |
对每组的14~15个克隆进行分析CpG岛甲基化的发生率,发现共有27个位点发生甲基化。C组、S组和OA组的Kcna2甲基化率分别为(0.257 ± 0.057)%、(0.262±0.076)%和(0.532±0.124)%。与C组和S组相比,OA组大鼠4周时DRG内Kcna2启动子区域甲基化发生率显著增高(P < 0.01);C组与S组差异无统计学意义(P>0.05,图 6)。
![]() |
图 6 3组大鼠DRG神经元Kcna2启动子区域甲基化水平 Fig.6 Methylation level of Kcna2 gene promoter region in DRG neurons in the 3 groups. Group C: blank control group; Group S: saline group; Group OA: osteoarthritis model group. *#P < 0.01 vs group C and group S (Mean±SD, n=4) |
疼觉敏化是NP的典型特征,表现为疼觉过敏、疼觉超敏和自发性疼痛。然而,晚期骨关节炎患者疼痛范围扩大、远离关节部位[5],表现为自发性疼痛[14-15]并对温度和压力变化敏感[16],提示疼觉敏化参与骨关节炎疼痛的发病机制。本研究表明,OA组大鼠关节腔注射碘乙酸钠2周后PWMT显著低于C组和S组、并于4周后达高峰,进一步说明痛觉敏化参与了骨关节炎大鼠疼痛的发病机制、骨关节炎疼痛具有与NP相似的特征与发病机制。
研究表明,DRG神经元损伤不仅是NP的重要发病机制之一[17-18],而且是引起骨关节炎疼痛外周敏化的重要原因[19-20]。ATF-3是细胞应激反应最早表达的转录因子,正常情况下低微表达,当细胞受到各种病理生理刺激时其表达迅速增加。因此,ATF-3常被用作神经损伤标志物[12, 21]。本研究表明,OA组大鼠4周时DRG神经元ATF-3表达显著增加,提示DRG中有神经元损伤。另外,外周神经损伤亦可引起DRG无菌性炎症[22-23],而iNOS是调节炎症反应的重要分子。在致炎因子的作用下,iNOS迅速表达并生成多达1000倍以上内皮型和神经型NOS合成量的NO,产生炎症瀑式级联反应,促进炎症的发展。此外,过量的NO还增强氧化应激、兴奋性毒性反应,加重神经元损伤。本研究结果表明,4周时OA组大鼠DRG神经元iNOS表达显著高于C组及S组,提示OA组大鼠DRG炎症反应增强。另外一些研究表明,OA模型大鼠DRG降钙素基因相关肽[19, 24]与辣椒素受1 [25-26]的表达均显著增高,进一步支持OA模型动物存在DRG损伤和炎症反应。
研究表明,神经元兴奋性增加并异常放电是DRG神经元损伤后引起疼痛外周敏化的主要原因[11, 26]。Kv主要参与细胞静息膜电位和动作电位复极化过程的调节,决定细胞的兴奋性和动作电位的发放频率与幅度,是由亚基和亚基组成的四聚体。根据亚基的不同,Kv通道可以分为12个亚族:Kv1-12。其中,Kv1的亚基Kv1.2(即KCNA2)在DRG神经元中高表达[27-28]。Fan等[8]的研究表明,NP模型大鼠受损的DRG神经元KCNA2表达显著降低,而过表达KCNA2可以减轻NP的痛觉过敏。Zhao等[11]报道,DRG神经元KCNA2在脊神经结扎构建的慢性疼痛大鼠模型中表达显著下降,Kv电流减少,使得神经元异常兴奋和放电进而导致痛觉外周敏化。本研究结果表明,从注射碘乙酸钠2周开始,OA组Kcna2 mRNA表达量开始低于其他两组,4周时这一差异最显著;进一步Western blot检测显示,4周时OA组KCNA2表达量显著低于其他两组。由于OA模型大鼠疼痛行为学的变化与Kcna2 mRNA变化趋势基本一致,因此我们认为骨关节炎大鼠疼痛行为学的变化与DRG神经元KCNA2的表达水平具有相关性。
DNA甲基化是在不改变DNA序列的前提下,调控基因转录和表达的重要表观遗传修饰方式之一。研究表明,DNA甲基化机制在NP发生过程中发挥了重要作用。在坐骨神经慢性压迫性损伤小鼠模型中,慢性神经损伤引起小鼠脊髓μ阿片受体编码基因启动子区域甲基化程度升高和受体蛋白表达水平的降低[29]。此外,研究表明,在脊神经结扎构建的NP大鼠模型中,DRG神经元μ阿片受体和阿片受体编码的基因启动子区域甲基化水平增高,使得二者表达降低[30]。最近研究发现,在上述两种大鼠模型中,DRG神经元内DNA甲基化转移酶3a表达显著增强,上调Kcna2启动子区域甲基化水平进而降低KCNA2的表达,最终使得Kv通道电流降低、神经元兴奋性增强[11]。然而,由于受经费和时间限制,本实验未对Kcna2启动子区域甲基化增强的原因做进一步研究。
目前,建立大鼠骨关节炎模型的方法多样,关节腔内注射碘乙酸钠操作简单、构建的模型可重复度高、稳定性好、病程短、病理变化与人类骨关节炎的病理变化相似度高,已被广泛用于骨关节炎的相关研究[6, 12, 19]。研究表明,关节腔内注射碘乙酸钠与部分内侧半月板切除术构建的大鼠膝关节骨关节炎模型,均可引起膝关节组织学改变和疼痛相关行为学变化,但碘乙酸钠诱导的骨关节炎模型疼痛特点更符合临床实际[13]。本研究参考文献,选择碘乙酸钠的剂量、浓度与容积[12, 25]。本研究表明,OA组大鼠膝关节病理学发生显著改变,与人类骨关节炎组织病理学变化相似,提示骨关节炎模型建立成功。
综上所述,碘乙酸钠诱导的骨关节炎疼痛模型大鼠DRG神经元Kcna2启动子区域甲基化增强,并进一步引起KCNA2表达降低,但Kcna2启动子区域甲基化增强的机制尚待进一步研究。
[1] |
Garg Y, Singh J, Sohal HS, et al. Comparison of clinical effectiveness and safety of newer nonsteroidal anti-inflammatory drugs in patients of osteoarthritis of knee joint: a randomized, prospective, open-label parallel-group study[J]. Indian J Pharmacol, 2017, 49(5): 383-9. |
[2] |
Huang WN, Tso TK. Etoricoxib improves osteoarthritis pain relief, joint function, and quality of Life in the extreme elderly[J]. Bosn J Basic Med Sci, 2018, 18(1): 87-94. |
[3] |
Krebs EE, Gravely A, Nugent S, et al. Effect of opioid vs nonopioid medications on Pain-Related function in patients with chronic back pain or hip or knee osteoarthritis pain: the SPACE randomized clinical trial[J]. JAMA, 2018, 319(9): 872-82. DOI:10.1001/jama.2018.0899 |
[4] |
Maresca M, Micheli L, Cinci L, et al. Pain relieving and protective effects of Astragalus hydroalcoholic extract in rat arthritis models[J]. J Pharm Pharmacol, 2017, 69(12): 1858-70. DOI:10.1111/jphp.2017.69.issue-12 |
[5] |
Power JD, Perruccio AV, Gandhi R, et al. Neuropathic pain in endstage hip and knee osteoarthritis: differential associations with patient-reported pain at rest and pain on activity[J]. Osteoarthritis Cartilage, 2018, 26(3): 363-9. DOI:10.1016/j.joca.2018.01.002 |
[6] |
Comi E, Lanza M, Ferrari F, et al. Efficacy of CR4056, a first-inclass imidazoline-2 analgesic drug, in comparison with naproxen in two rat models of osteoarthritis[J]. J Pain Res, 2017, 10(5): 1033-43. |
[7] |
Yin RY, Liu D, Chhoa M, et al. Voltage-gated Sodium Channel function and expression in injured and uninjured rat dorsal root ganglia neurons[J]. Int J Neurosci, 2016, 126(2): 182-92. |
[8] |
Fan L, Guan X, Wang W, et al. Impaired neuropathic pain and preserved acute pain in rats overexpressing voltage-gated Potassium Channel subunit Kv1.2 in primary afferent neurons[J]. Mol Pain, 2014, 25(4): 8. |
[9] |
Shen KF, Zhu HQ, Wei XH, et al. Interleukin-10 down-regulates voltage gated Sodium channels in rat dorsal root ganglion neurons[J]. Exp Neurol, 2013, 247(11): 466-75. |
[10] |
Miller RE, Ishihara S, Bhattacharyya B, et al. Chemogenetic inhibition of pain neurons in a mouse model of osteoarthritis[J]. Arthritis Rheumatol, 2017, 69(7): 1429-39. DOI:10.1002/art.v69.7 |
[11] |
Zhao JY, Liang LL, Gu XY, et al. DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons[J]. Nat Commun, 2017, 8(3): 14712. |
[12] |
Thakur M, Rahman W, Hobbs C, et al. Characterisation of a peripheral neuropathic component of the rat monoiodoacetate model of osteoarthritis[J]. PLoS One, 2012, 7(3): e33730. |
[13] |
Fernihough J, Gentry C, Malcangio M, et al. Pain related behaviour in two models of osteoarthritis in the rat knee[J]. Pain, 2004, 112(1/ 2): 83-93. |
[14] |
Wang L, Zhang L, Pan H, et al. Levels of neuropeptide Y in synovial fluid Relate to pain in patients with knee osteoarthritis[J]. BMC Musculoskelet Disord, 2014, 36(7): 319. |
[15] |
Fioravanti A, Giannitti C, Bellisai BA, et al. Efficacy of balneotherapy on pain, function and quality of Life in patients with osteoarthritis of the knee[J]. Int J Biometeorol, 2012, 56(4): 583-90. |
[16] |
Wright A, Benson H, Will R, et al. Cold pain threshold identifies a subgroup of individuals with knee osteoarthritis that present with multimodality hyperalgesia and elevated pain levels[J]. Clin J Pain, 2017, 33(9): 793-803. DOI:10.1097/AJP.0000000000000458 |
[17] |
Wang W, Atianjoh F, Gauda EB, et al. Increased expression of Sodium Channel subunit Nav1.1 in the injured dorsal root ganglion after peripheral nerve injury[J]. Anat Rec (Hoboken), 2011, 294(8): 1406-11. DOI:10.1002/ar.v294.8 |
[18] |
Chen W, Lu Z. Upregulated TLR3 promotes neuropathic pain by regulating autophagy in rat with L5 spinal nerve ligation model[J]. Neurochem Res, 2017, 42(2): 634-43. DOI:10.1007/s11064-016-2119-2 |
[19] |
Miyamoto S, Nakamura J, Ohtori S, et al. Pain-related behavior and the characteristics of dorsal-root ganglia in a rat model of hip osteoarthritis induced by monoiodoacetate[J]. J Orthop Res, 2017, 35(7): 1424-30. |
[20] |
Kwon JY, Lee SH, Na HS, et al. Kartogenin inhibits pain behavior, chondrocyte inflammation, and attenuates osteoarthritis progression in mice through induction of I-10[J]. Sci Rep, 2018, 8(1): 13832. DOI:10.1038/s41598-018-32206-7 |
[21] |
Nascimento D, Pozza DH, Castro-Lopes JM, et al. Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats[J]. Neurosignals, 2011, 19(4): 210-21. DOI:10.1159/000330195 |
[22] |
Mclachlan EM, Hu P. Inflammation in dorsal root ganglia after peripheral nerve injury: effects of the sympathetic innervation[J]. Auton Neurosci, 2014, 182(SI): 108-17. |
[23] |
Du B, Ding YQ, Xiao X, et al. CD4+αβT cell infiltration into the leptomeninges of lumbar dorsal Roots contributes to the transition from acute to chronic mechanical allodynia after adult rat tibial nerve injuries[J]. J Neuroinflammation, 2018, 15(1): 81. |
[24] |
Yu DG, Liu FX, Liu M, et al. The inhibition of subchondral bone lesions significantly reversed the weight-bearing deficit and the overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal Horn in the monosodium iodoacetate induced model of osteoarthritis pain[J]. PLoS One, 2013, 8(10): e77824. |
[25] |
Koda K, Hyakkoku K, Ogawa K, et al. Sensitization of TRPV1 by protein kinase C in rats with mono-iodoacetate-induced joint pain[J]. Osteoarthritis Cartilage, 2016, 24(7): 1254-62. DOI:10.1016/j.joca.2016.02.010 |
[26] |
Kao DJ, Li AH, Chen JC, et al. CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Na(v)1.8 Sodium channels in dorsal root ganglion neurons[J]. J Neuroinflammation, 2012, 9(1): 189. |
[27] |
Yang EK, Takimoto K, Hayashi Y, et al. Altered expression of Potassium Channel subunit mRNA and -dendrotoxin sensitivity of Potassium currents in rat dorsal root ganglion neurons after axotomy[J]. Neuroscience, 2004, 123(4): 867-74. |
[28] |
Miao XR, Fan LC, Wu S, et al. DNMT3a contributes to the development and maintenance of bone cancer pain by silencing Kv1.2 expression in spinal cord dorsal Horn[J]. Mol Pain, 2017, 35(7): 13. |
[29] |
Shao CJ, Gao Y, Jin D, et al. DNMT3a methylation in neuropathic pain[J]. J Pain Res, 2017, 10(2): 2253-62. |
[30] |
Sun LL, Zhao JY, Gu XY, et al. Nerve injury-induced epigenetic silencing of opioid receptors controlled by DNMT3a in primary afferent neurons[J]. Pain, 2017, 158(6): 1153-65. DOI:10.1097/j.pain.0000000000000894 |