文章快速检索     高级检索
  南方医科大学学报  2019, Vol. 39Issue (1): 125-126, 封三  DOI: 10.12122/j.issn.1673-4254.2019.01.20.
0

引用本文 [复制中英文]

陈飞, 汪红娟, 李强, 黎志超, 骆予倩. 甲状腺球蛋白负反馈调节机制[J]. 南方医科大学学报, 2019, 39(1): 125-126, 封三. DOI: 10.12122/j.issn.1673-4254.2019.01.20.
CHEN Fei, WANG Hongjuan, LI Qiang, LI Zhichao, LUO Yuqian. Progress in the research of negative feedback effect of thyroglobulin[J]. Journal of Southern Medical University, 2019, 39(1): 125-126, 封三. DOI: 10.12122/j.issn.1673-4254.2019.01.20.

基金项目

广东省医学科学技术研究基金(A2016439)

作者简介

陈飞,博士,主治医师,E-mail:gzchenfei@126.com

文章历史

收稿日期:2018-09-06
甲状腺球蛋白负反馈调节机制
陈飞 1, 汪红娟 1, 李强 1, 黎志超 1, 骆予倩 2     
1. 南方医科大学珠江医院,广东 广州 510280;
2. 南京大学医学院附属鼓楼医院,江苏 南京 210008
摘要: 甲状腺球蛋白(Tg)是甲状腺滤泡中最重要含量最丰富的蛋白质,临床作为甲状腺癌复发和持续状态的肿瘤标志物被广泛深入的研究。传统观点认为Tg是甲状腺激素合成的物质基础,不参与调节甲状腺激素合成分泌,甲状腺激素合成分泌受甲状腺-下丘脑-脑垂体轴负反馈调节机制调控。本文阐述的甲状腺球蛋白负反馈调节机制基于实验研究结论认为:甲状腺球蛋白对甲状腺滤泡细胞合成甲状腺激素功能存在负向调控作用,可以拮抗促甲状腺激素TSH的正向调控作用,推测甲状腺滤泡细胞功能是Tg和TSH共同作用的结果,并提出滤泡周期模型揭示甲状腺滤泡异质性的原因。本文综述甲状腺球蛋白负反馈调节机制研究进展,展望了该研究的临床意义,对比甲状腺-下丘脑-脑垂体轴负反馈调节机制,说明两个理论之间的差异,加深对甲状腺两个负反馈调节机制的认识。
关键词: 甲状腺球蛋白    甲状腺激素合成    负反馈学说    滤泡周期模型    
Progress in the research of negative feedback effect of thyroglobulin
CHEN Fei 1, WANG Hongjuan 1, LI Qiang 1, LI Zhichao 1, LUO Yuqian 2     
1. Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China;
2. Department of Laboratory Medicine, Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China
Abstract: Thyroglobulin is the most important and abundant protein in thyroid follicles and has been widely studied as a tumor marker of thyroid cancer recurrence and persistence. Tg is considered the material basis of thyroid hormone synthesis and does not participate in the regulation of thyroid hormone synthesis and secretion. This review summarizes the recent progress in the research of thyroid hormone synthesis and secretion regulation via a negative feedback regulation mechanism by the thyroid-hypothalamus-pituitary axis. Thyroglobulin can negatively regulate the synthesis of thyroid hormone by thyroid follicular cells and antagonize the positive regulation of thyrotropin TSH. The function of thyroid follicular cells is presumably a result of Tg and TSH interaction, and a follicular cycle model is proposed to explain the causes of follicular heterogeneity in glands. We also discuss the prospects and clinical significance of studies into the negative feedback regulation mechanism of the thyroid-hypothalamus-pituitary axis and compare two theories for this mechanism.
Keywords: thyroglobulin    thyroid hormone synthesis    negative feedback effect    follicular cycle model    

甲状腺球蛋白(Tg)是甲状腺滤泡上皮细胞特异性合成一种大分子的糖蛋白复合物,由大约2768个氨基酸组成,是甲状腺滤泡中最重要,含量最丰富的蛋白质。合成甲状腺球蛋白的多肽链在粗面内质网中合成修饰后,折叠成二聚体进入高尔基体经修饰硫化后成熟,通过胞吐作用到达细胞顶端表面贮存于甲状腺滤泡腔,甲状腺细胞具有结构与功能极性[1]。从细胞基底部转运至滤泡腔内的碘与甲状腺球蛋白的酪氨酸残基结合,形成一碘酪氨酸(MIT)和二碘酪氨酸(DIT),两者在甲状腺过氧化物酶催化作用下偶联,两个DIT偶联形成四碘甲状腺原氨酸(T4),一个DIT和一个MIT偶联生成三碘甲状腺原氨酸(T3)。碘化Tg通过胞吞作用回到细胞后溶酶体降解释放出甲状腺激素T3和T4,甲状腺激素经细胞周围毛细血管网进入血液循环[2]

1 Tg特异性抑制甲状腺激素合成功能基因表达

Tg参与甲状腺激素合成,同时可以抑制甲状腺激素合成功能基因表达。用滤泡内生理浓度(0.1~30 mg/mL)的甲状腺球蛋白培养大鼠甲状腺FRTL-5细胞后,检测FRTL-5细胞调控甲状腺激素合成功能基因mRNA与蛋白表达变化,发现生理浓度的Tg能够抑制这些基因的mRNA和蛋白表达[3]。甲状腺激素合成功能基因主要包括控制Tg蛋白合成的Tg基因[4-5],控制碘从血液转运至甲状腺细胞内的Nis/Slc5a5基因[6-7],控制碘从甲状腺细胞转运至滤泡腔的Pendrin/Slc26a4基因[8-9],催化Tg和碘结合的Tpo,Duox2和Duoxa2基因,对激素合成起促进作用的转录因子NKX2-1,FOXE1和PAX8 [10-13]。Tg能够抑制Tg基因和蛋白的表达,即抑制自身的表达[14];Tg抑制Nis基因和蛋白的表达,导致甲状腺细胞摄碘减少[15];Tg抑制Tpo,Duox2和Duoxa2基因表达,Duox2和Duoxa2基因调控过氧化氢的生成,过氧化氢的生成受到显著抑制,Tpo和过氧化氢是甲状腺球蛋白碘化过程中重要的催化剂[16-18]。以上研究结果显示Tg对甲状腺激素合成链条上已知的功能基因及蛋白表达呈现负向调控作用,特别之处是Tg对Pendrin/Slc26a4基因呈双向调控作用,不同于对其他基因仅显示抑制作用,低浓度的Tg促进Pendrin基因表达,高浓度的Tg抑制Pendrin基因表达[19-20]

TSH是控制甲状腺功能的关键激素,对甲状腺激素合成功能基因有正向调控作用,铃木教授发现Tg能够拮抗TSH作用抑制甲状腺激素合成功能基因表达,在TSH存在和不存在状态下,Tg都能显著抑制Nis,Tg,Tpo,Duox2和Duoxa2的表达[21-22],另外,Tg特异性抑制甲状腺激素合成功能基因的表达,并且存在浓度和剂量依赖效应,使用甲状腺激素、碘、牛血清蛋白和甘露醇等重复Tg的试验,对甲状腺激素合成功能分子表达均未显示出显著的抑制作用[23];研究还发现随着Tg沉降系数的增加,Tg对甲状腺激素合成基因的抑制效果逐渐增加,如12S,19S,27S的Tg,27S的Tg对基因的抑制作用达到了最强[24]

2 Tg负反馈学说和滤泡周期模型

基于Tg能够特异性抑制甲状腺激素合成功能基因这一发现,铃木教授提出Tg负反馈学说[15]:甲状腺滤泡细胞基底侧接受血液中TSH,在TSH作用下摄取血液中的碘合成Tg存储在细胞顶端的滤泡内,当Tg浓度升高到一定程度,甲状腺滤泡细胞功能受滤泡内Tg的抑制,甲状腺激素合成功能基因表达下调;另一方面,在TSH作用下滤泡内Tg被细胞重吸收后水解释放出甲状腺激素,滤泡内Tg浓度下降,Tg对甲状腺滤泡细胞抑制作用解除,滤泡内Tg合成储存增加,Tg负反馈调节学说提示甲状腺滤泡细胞受TSH正常调控和Tg负向调控共同作用,维持稳态发挥生理功能。

甲状腺滤泡细胞受相同浓度TSH作用,但每个滤泡的大小、含碘量、Tg浓度、过氧化氢酶活性、合成甲状腺激素含量等差异很大,这就是所谓的甲状腺滤泡异质性[15],甲状腺滤泡异质性这一现象很早就被发现,但没有合理的解释。铃木教授提出滤泡周期模型揭示滤泡异质性的成因[15],依据Tg负反馈学说,滤泡功能依赖于TSH和Tg共同作用,TSH能同时促进Tg的合成和重吸收,但是合成的速度慢于重吸收;Tg对自身的合成有强烈的抑制作用,并且对自身合成的抑制作用超过了TSH的促进作用;低浓度的Tg促进Pendrin表达,高浓度的Tg抑制Pendrin表达。因此当高浓度的Tg聚集滤泡内,TSH促进Tg合成的作用被Tg对自身的负反馈抑制对抗,Tg的合成被抑制;TSH促进Tg重吸收,Tg被降解后释放甲状腺激素,由于合成的速度慢于重吸收,滤泡内Tg的浓度迅速下降,负反馈作用减弱,Tg合成储存增加;同时,低浓度的Tg刺激Pendrin表达,也能促进Tg的碘化,Tg在滤泡内逐渐积聚,当浓度达到一定高的水平,负反馈抑制作用超过TSH的刺激作用,整个过程周而复始地循环,由于滤泡处于循环的不同周期,所以表现出异质性,滤泡异质性提示滤泡内存在功能调节因子,Tg是滤泡功能调节因子之一。

Tg负反馈学说和滤泡周期模型目前仍是假说,需要体内实验进一步验证。体外实验培养的大鼠甲状腺FRTL-5细胞是单层细胞,用TSH和Tg直接培养FRTL-5细胞,与体内的作用方式不尽相同;另外,体外甲状腺细胞没有滤泡结构,无法合成甲状腺激素,也就无法检测Tg对细胞合成甲状腺激素的实际影响,这是未来实验需要解决的问题。

本文讨论的Tg负反馈学说是甲状腺滤泡内Tg对甲状腺细胞功能的调控作用,不同临床应用的血清Tg。血清Tg是人体血液中的甲状腺球蛋白,首选作为甲状腺癌复发和持续存在的标志物,血清Tg浓度与甲状腺癌预后相关[25-26]。Tg也是甲状腺最重要的抗原物质,自身免疫性甲状腺炎病人表现为TgAb的升高[27-28]

Tg负反馈学说是甲状腺滤泡内甲状腺球蛋白制衡TSH作用的假说,不同于下丘脑-脑垂体-甲状腺轴调控学说:垂体分泌TSH促进甲状腺激素合成释放,血液中甲状腺激素浓度升高时负反馈抑制垂体分泌TSH,血液中TSH浓度下降;如果血液中甲状腺激素浓度过低,TSH分泌增加刺激甲状腺激素合成释放,通过负反馈机制维持血液中甲状腺激素在生理浓度,如果负反馈机制异常血液中甲状腺激素浓度持续升高就会出现甲状腺机能亢进症[28-30]。下丘脑-脑垂体-甲状腺轴调控学说揭示血液中甲状腺激素和TSH存在制衡关系。

Tg负反馈学说揭示Tg和TSH对甲状腺细胞的调控存在制衡关系,这对甲状腺病理生理研究有很大启示。Tg的临床意义目前限于甲状腺癌肿瘤标志物和自身免疫性甲状腺炎的抗体诊断检测,如果Tg负反馈学说成立,Tg负反馈机制异常可能与甲状腺疾病发病机制相关;假如,Tg本身或抑制甲状腺功能基因机制发生异常,Tg负调控作用减弱引起甲状腺功能基因表达增强,可能发生甲状腺功能亢进或腺瘤样结节形成;Tg负调控作用激活增强时,甲状腺激素合成功能基因表达减弱,可能引起甲状腺功能减退,Tg负反馈学说及其发生的分子机制研究可能为甲状腺疾病研究开辟新领域。

致谢: 感谢日本帝京大学临床检查学科铃木幸一教授、川岛晃博士对本文的贡献!
参考文献
[1]
Weber J, Mcinnes J, Kizilirmaka C, et al. Interdependence of thyroglobulin processing and thyroid hormone export in the mouse thyroid gland[J]. Eur J Cell Biol, 2017, 96(5, SI): 440-56. DOI: 10.1016/j.ejcb.2017.02.002.
[2]
Di Jeso B, Arvan P. Thyroglobulin from molecular and cellular biology to clinical endocrinology[J]. Endocr Rev, 2016, 37(1): 2-36. DOI: 10.1210/er.2015-1090.
[3]
Oda K, Luo Y, Yoshihara A, et al. Follicular thyroglobulin induces cathepsin H expression and activity inthyrocytes[J]. Biochem Biophys Res Commun, 2017, 483(1): 541-6. DOI: 10.1016/j.bbrc.2016.12.109.
[4]
Ma R, Latif R, Davies TF. Thyroid follicle formation and thyroglobulin expression in multipotent endodermal stem cells[J]. Thyroid, 2013, 23(4): 385-91. DOI: 10.1089/thy.2012.0644.
[5]
Wen 1G. Eder K, ringseis R. sterol regulatory element-binding proteins are transcriptional regulators of the thyroglobulin gene in thyroid cells [J]. Biochim Biophys Acta, 2016, 1859(8): 994-1003. https://www.sciencedirect.com/science/article/pii/S1874939916301250
[6]
Portulano, Paroder-Belenitsky CM N. Carrasco. the Na+/i-symporter (NIS): mechanism and medical impact[J]. Endocr Rev, 2014, 35(1): 106-49. DOI: 10.1210/er.2012-1036.
[7]
Shi XZ, Xue L, Jin X, et al. Different expression of sodium-iodide importer (NIS) between lactating breast and thyroid tissues May be due to structural difference of thyroid-stimulating hormone receptor (TSHR)[J]. J Endocrinol Invest, 2017, 40(1): 41-8.
[8]
Chen XY, Lin CH, Yang LH, et al. The effect on Sodium/iodide symporter and pendrin in thyroid colloid retention developed by excess iodide intake[J]. Biol Trace Elem Res, 2016, 172(1): 193-200. DOI: 10.1007/s12011-015-0580-4.
[9]
Silveira JC, Kopp PA. Pendrin and anoctamin as mediators of apical iodide efflux in thyroid cells[J]. Curr Opin Endocrinol Diabetes Obes, 2015, 22(5): 374-80. DOI: 10.1097/MED.0000000000000188.
[10]
Yuqian Luo, Yuko Ishido, Naoki Hiroi, et al. The Emerging Roles of Thyroglobulin[J]. Adv in Endocrinol, 2014, 24: 1-7.
[11]
Fernandez LP, Lopez-Marquez A, Santisteban P. Thyroid transcription factors in development, differentiation and disease[J]. Nat Rev Endocrinol, 2015, 11(1): 29-42. DOI: 10.1038/nrendo.2014.186.
[12]
Ma R, Latif R, Davies TF. Human embryonic stem cells form functional thyroid follicles[J]. Thyroid, 2015, 25(4): 455-61.
[13]
Dame K, Cincotta S, Lang AH, et al. Thyroid progenitors are robustly derived from embryonic stem cells through transient, developmental Stage-specific overexpression of Nkx2-1[J]. Stem Cell Reports, 2017, 8(2): 216-25. DOI: 10.1016/j.stemcr.2016.12.024.
[14]
Luo YQ, Akama T, Okayama A, et al. A novel role for flotillincontaining lipid rafts in negative-feedback regulation of thyroidspecific gene expression by thyroglobulin[J]. Thyroid, 2016, 26(11): 1630-9. DOI: 10.1089/thy.2016.0187.
[15]
Sellitti DF, Suzuki K. Intrinsic regulation of thyroid function by thyroglobulin[J]. Thyroid, 2014, 24(4): 625-38. DOI: 10.1089/thy.2013.0344.
[16]
Yoshihara A, Hara T, Kawashima A, et al. Regulation of dual oxidase expression and H2O2 production by thyroglobulin[J]. Thyroid, 2012, 22(10): 1054-62. DOI: 10.1089/thy.2012.0003.
[17]
Weber G, Rabbiosi S, Zamproni I, et al. Genetic defects of hydrogen peroxide generation in the thyroid gland[J]. J Endocrinol Invest, 2013, 36(4): 261-6.
[18]
Kizys MM, Louzada RA, Mitne-Neto M, et al. DUOX2 mutations are associated with congenital hypothyroidism with ectopic thyroid gland[J]. J Clin Endocrinol Metab, 2017, 102(11): 4060-71. DOI: 10.1210/jc.2017-00832.
[19]
Suzuki K, Nakazato M, Ulianich L, et al. Thyroglobulin autoregulation of thyroid-specific gene expression and follicular function[J]. Rev Endocr Metab Disord, 2000, 1(3): 217-24. DOI: 10.1023/A:1010035200212.
[20]
Suzuki K, Kohn L.D.. differential regulation of apical and basal iodide transporters in the thyroid by thyroglobulin[J]. J Endocrinol, 2006, 189(2): 247-55. DOI: 10.1677/joe.1.06677.
[21]
Suzuki K, Kawashima A, Yoshihara A, et al. Role of thyroglobulin on negative feedback autoregulation of thyroid follicular function and growth[J]. J Endocrinol, 2011, 209(2): 169-74. DOI: 10.1530/JOE-10-0486.
[22]
Sue M, Hayashi M, Kawashima A, et al. Thyroglobulin (Tg) activates MAPK pathway to induce thyroid cell growth in the absence of TSH, insulin and serum[J]. Biochem Biophys Res Commun, 2012, 420(3): 611-5. DOI: 10.1016/j.bbrc.2012.03.046.
[23]
Noguchi Y, Harii N, Suzuki K, et al. Thyroglobulin(Tg)induces thyroid cell growth ina concentration-specific manner by a mechanism other than thyrotropin/cAMP stimulation[J]. Biochem Biophys Res Commun, 2010, 391(1): 890-4. DOI: 10.1016/j.bbrc.2009.11.158.
[24]
Ishido Y, Yamazaki K, Kammori M, et al. Thyroglobulin suppresses thyroid-specific gene expression in cultures of normal but not neoplastic human thyroid follicular cells[J]. J Clin Endocrinol Metab, 2014, 99(4): E694-702. DOI: 10.1210/jc.2013-3682.
[25]
Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133.
[26]
Pitoia F, Abelleira E, Cross G. Thyroglobulin levels measured at the time of remnant ablation to predict response to treatment in differentiated thyroid cancer after thyroid hormone withdrawal or recombinant human TSH[J]. Endocrine, 2017, 55(1): 209-17. DOI: 10.1007/s12020-016-1122-3.
[27]
Luo YQ, Kawashima A, Ishido Y, et al. Iodine excess as an environmental risk factor for autoimmune thyroid disease[J]. Int J Mol Sci, 2014, 15(7): 12895-912. DOI: 10.3390/ijms150712895.
[28]
Lo MS, Towne M, Vannoy GE, et al. Monogenic hashimoto thyroiditis associated with a variant in the thyroglobulin (TG) gene[J]. J Autoimmun, 2018, 86: 116-9. DOI: 10.1016/j.jaut.2017.09.003.
[29]
Shyamasunder AH, Abraham P. Measuring TSH receptor antibody to influence treatment choices in Graves' disease[J]. Clin Endocrinol (Oxf), 2017, 86(5): 652-7. DOI: 10.1111/cen.13327.
[30]
Bell L, Hunter AL, Kyriacou A, et al. Clinical diagnosis of Graves' or non-Graves' hyperthyroidism compared to TSH receptor antibody test[J]. Endocr Connect, 2018, 7(4): 504-10. DOI: 10.1530/EC-18-0082.