文章快速检索     高级检索
  南方医科大学学报  2018, Vol. 38Issue (8): 980-985  DOI: 10.3969/j.issn.1673-4254.2018.08.13.
0

引用本文 [复制中英文]

梁青春, 陈燕亭, 李传翔, 陆立鹤. 槲皮素调节ROS/TLR4信号通路抑制Ox-LDL诱导的血管平滑肌细胞钙化[J]. 南方医科大学学报, 2018, 38(8): 980-985. DOI: 10.3969/j.issn.1673-4254.2018.08.13.
LIANG Qingchun, CHEN Yanting, LI Chuanxiang, LU Lihe. Quercetin attenuates Ox-LDL-induced calcification in vascular smooth muscle cells by regulating ROS-TLR4 signaling pathway[J]. Journal of Southern Medical University, 2018, 38(8): 980-985. DOI: 10.3969/j.issn.1673-4254.2018.08.13.

基金项目

广东省自然科学基金(2016A030313226,2015A030312009)

作者简介

梁青春,主治医师,E-mail: 1906968820@qq.com

通信作者

陆立鹤,副教授,硕士研究生导师,E-mail: lulihe@mail.sysu.edu.cn

文章历史

收稿日期:2018-06-01
槲皮素调节ROS/TLR4信号通路抑制Ox-LDL诱导的血管平滑肌细胞钙化
梁青春 1, 陈燕亭 2, 李传翔 1, 陆立鹤 2     
1. 南方医科大学第三附属医院麻醉科,广东 广州 510630;
2. 中山大学中山医学院病理生理学教研室,广东 广州 510080
摘要: 目的 观察槲皮素对氧化型低密度脂蛋白(Ox-LDL)诱导的血管平滑肌细胞成骨样分化和钙化的作用,并阐明其分子机制。方法 采用Ox-LDL处理人血管平滑肌细胞,茜素红染色检测细胞钙化,测定碱性磷酸酶(ALP)活性和qPCR测骨相关蛋白Msx2、BMP2、Osterix以及收缩蛋白SMA和SM22α mRNA表达水平。观察槲皮素对Ox-LDL诱导的血管平滑肌细胞钙化,ALP活性,TLR4、Msx2、BMP2、Osterix、SMA和SM22α的mRNA表达水平,ROS含量及SOD活性的影响。采用TLR4 siRNA转染血管平滑肌细胞,观察敲低TLR4对细胞钙化,ALP活性及Msx2、BMP2、Osterix、SMA和SM22α mRNA表达水平的影响。结果 Ox-LDL可促进血管平滑肌细胞钙化和上调TLR4表达水平(P < 0.05);槲皮素能明显减轻Ox-LDL诱导的细胞钙化和降低ALP的活性,下调Msx2、BMP2、Osterix mRNA的表达水平,上调血管平滑肌收缩蛋白SMA和SM22α mRNA的表达水平(P < 0.05)。此外,槲皮素可明显提高SOD的活性,降低活性氧物质(ROS)的含量,下调TLR4的表达水平(P < 0.05);TLR4 siRNA也能减轻Ox-LDL诱导的细胞钙化(P < 0.05)。结论 槲皮素可明显抑制Ox-LDL诱导的血管平滑肌细胞钙化,其机制可能与ROS激活的TLR4信号通路有关。
关键词: 血管钙化    血管平滑肌细胞    槲皮素    成骨样分化    氧化型低密度脂蛋白    
Quercetin attenuates Ox-LDL-induced calcification in vascular smooth muscle cells by regulating ROS-TLR4 signaling pathway
LIANG Qingchun1, CHEN Yanting2, LI Chuanxiang1, LU Lihe2     
1. Department of Anesthesiology, Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China;
2. Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou 510080, China
Abstract: Objective To determine whether quercetin inhibits oxidized low-density lipoprotein (Ox-LDL)-induced osteogenic differentiation and calcification of vascular smooth muscle cells (VSMCs) and understand the underlying mechanism. Methods The calcification of human VSMCs following Ox-LDL treatment was assessed using alizarin red staining and by detecting ALP activity. The mRNA expressions of the bone-related genes including Msx2, BMP2 and Osterix, and the contractile proteins including SMA and SM22α were analyzed using qPCR. The effects of quercetin were investigated on OxLDL-induced VSMC calcification and changes in ALP activity, expressions of Msx2, BMP2, Osterix, SMA and SM22α, ROS levels and SOD activity. The effect of Toll like receptor 4 (TLR4) silencing mediated by siRNA transfection on cell calcification, ALP activity, gene expressions and ROS levels were investigated. Results Ox-LDL treatment promoted VSMC calcification and up-regulated TLR4 expression. Quercetin treatment significantly attenuated Ox-LDL-induced VSMC calcification, reduced ALP activity, down-regulated the expression levels of Msx2, BMP2 and Osterix, and up-regulated the expressions of vascular smooth muscle contractile proteins SMA and SM22α. In addition, Quercetin treatment markedly increased SOD activity, reduced ROS levels and TLR4 expression in VSMCs. Silencing TLR4 expression using TLR4 siRNA also significantly decreased calcification of the VSMCs. Conclusion Quercetin inhibits Ox-LDL-induced VSMC calcification in VSMCs possibly by targeting the ROS/TLR4 signaling pathway.
Keywords: vascular calcification    vascular smooth muscle cells    quercetin    osteogenic differentiation    oxidized low-density lipoprotein    

血管钙化是指钙磷矿物质异位沉积于动脉管壁,常见于动脉粥样硬化、高血压、糖尿病和慢性肾病晚期患者。血管钙化是心血管疾病发生率和死亡率增加的独立危险因素[1-2]。近些年来的大量研究表明血管钙化与骨生成过程类似,可受基因表达的主动调控[3-4]。研究表明氧化应激是促进血管钙化的重要因素[5-7]。氧化型低密度脂蛋白(Ox-LDL)可促进动脉粥样硬化和血管钙化的发生发展[8-9]。Ox-LDL通过增加血管平滑肌细胞氧化应激,提高碱性磷酸酶(ALP)的活性,从而促进血管平滑肌细胞成骨样分化和钙化[10-12]

Toll样受体4(TLR4)属于模式识别受体家族成员,在动脉粥样斑块处出现高表达,可调节炎症和动脉粥样硬化的发生[13-14]。研究表明Ox-LDL可上调巨噬细胞和血管平滑肌细胞TLR4的表达[15-16]。我们前期研究发现:Ox-LDL可通过上调TLR4的表达,促进血管平滑肌细胞成骨样分化和钙化[17]。目前尚未有干预TLR4信号通路抑制血管钙化的药物。

槲皮素是一种天然黄酮类化合物, 具有清除自由基,抑制脂质过氧化,下调活性氧(ROS)介导的下游信号通路,如核转录因子(NF-κB)等作用[18]。然而槲皮素对Ox-LDL诱导的血管平滑肌细胞钙化未见报道。本研究通过建立血管平滑肌细胞钙化体外模型,研究槲皮素对Ox-LDL诱导的血管平滑肌细胞钙化的作用,阐明其作用机制是否与调控TLR4的表达有关,为血管钙化的防治提供新思路。

1 材料和方法 1.1 材料与试剂

人血管平滑肌细胞(ATCC);细胞培养试剂、TRIzol、TLR4 siRNA、Lipofectamine 3000转染试剂(Life technology);槲皮素、p-nitrophenylphosphate、茜素红、β-甘油磷酸(BGP)(Sigma);活性氧试剂盒和SOD试剂盒(Beyotime);PrimeScript RT、SYBR green试剂盒(TaKaRa Biotechnology);BCA蛋白定量试剂盒(Pierce);Western blot发光试剂盒(Millipore)。

1.2 细胞培养

将人血管平滑肌细胞置于含10% FBS的DMEM培养基中培养,每周换培养液3次。细胞长满后传代,用含有10 mmol/L的β-甘油磷酸培养基处理血管平滑肌细胞,加入Ox-LDL(50 μg/mL)诱导细胞钙化,以native LDL(N-LDL)处理细胞作为实验对照。为了研究槲皮素对Ox-LDL诱导的细胞钙化的影响,在Ox-LDL处理细胞的基础上,用不同浓度的槲皮素(10、20、50 μmol/L)处理细胞。

1.3 Ox-LDL的制备

将EDTA加入健康人的血标本中抗凝,离心后收集上层血浆。加入密度为1.33 g/mL的KBr溶液,将血浆的密度调整为1.019 g/mL,4 ℃超高速(100 000 r/min)离心5 h。将上层VLDL弃掉,继续加入高密度KBr溶液,将血浆的密度调整至1.063 g/mL,然后4 ℃超高速(100 000 r/min)离心5 h,收集上层黄色的native LDL,将5 μmol/L CuSO4加入native LDL中即可获得Ox-LDL。

1.4 TLR4 siRNA转染血管平滑肌细胞

参考公司试剂说明,将3~6代的血管平滑肌细胞接种到6孔板,细胞密度为2 × 105/孔,然后用Lipofectamine 3000转染试剂将TLR4 siRNA或Scrambled siRNA(对照)转染血管平滑肌细胞。用荧光定量qPCR检测细胞的TLR4表达水平。

1.5 测定细胞钙化

用茜素红染色检测血管平滑肌细胞钙化沉积。去除培养液后,用PBS溶液洗细胞3次,4%的甲醛室温下固定细胞10 min,然后加入2%茜素红(pH 4.2)溶液染色5 min,去离子水清除残余颜色,相差显微镜下拍摄染色的细胞。采用邻甲酚酞络合剂的方法测定细胞钙离子浓度[19]

1.6 ALP活性

0.1% Triton X-100裂解细胞后抽提蛋白,用BCA法定量蛋白。在细胞裂解样品中加入pnitrophenylphosphate(p-NPP)反应底物,37 ℃孵育反应15 min,无色的底物p-NPP在ALP的作用下变成黄色的p-nitrophenol,使用NaOH终止反应后用分光光度计检测溶液吸光度A450 nm

1.7 荧光定量qPCR

参照Invitrogen试剂公司的使用说明,用TRIzol试剂提取血管平滑肌细胞的总RNA。用PrimeScript RT将1 μg mRNA反转录为cDNA,然后用SYBR green试剂盒配制成20 μL PCR反应体系,在StepOne Real Time PCR仪上进行荧光定量PCR。实验所用的引物如下:β- actin (forward): CTCTTCCAGCCTTCCTTCCT, β-actin (reverse): AGCACTGTGTTGGCGTACAG; Msx2 (forward): TGGATGCAGGAACCCGG, Msx2 (reverse): AGGGCTCATATGTCTTGGCG; BMP2 (forward): GCTAGACCTGTATCGCAGGC, BMP2 (reverse): AAACTCCTCCGTGGGGATAG; Osterix (forward): TAATGGGCTCCTTTCACCTG, Osterix (reverse): CACTGGGCAGACAGTCAGAA; SM22α (forward): AACAGCCTGTACCCTGATGG, SM22α (reverse): CGGTAGTGCCCATCATTCTT; SMA (forward): CCGGGAGAAAATGACTCAAA, SMA (reverse): GAAGGAATAGCCACGCTCAG; TLR4 (forward): AGAACTGCAGGTGCTGGATT, TLR4 (reverse): AAACTCTGGATGGGGTTTCC。以β- actin作为内参,△△Ct的方法计算基因mRNA表达的相对量。

1.8 ROS含量和SOD活性检测

采用活性氧检测试剂盒检测ROS含量,去除培养液,用PBS溶液洗细胞后加入荧光染料DCFH-DA,然后用PBS清洗细胞,检测荧光强度。SOD测定采用水溶性四氮唑(WST-1)法,按试剂盒说明书操作。

1.9 统计学分析

数据采用SPSS20.0软件分析,正态分布的计量资料结果以均数±标准差表示,两组间比较采用t检验,两组以上的比较采用单因素方差分析,P < 0.05为差异有统计学意义。

2 结果 2.1 Ox-LDL促进血管平滑肌细胞钙化

采用茜红素染色检测细胞钙化,与N-LDL对照组比较,Ox-LDL(50 μg/mL)能明显促进血管平滑肌细胞钙化(图 1A)。此外,钙离子浓度检测结果显示:相比较对照组,Ox-LDL可明显升高细胞钙离子浓度(P < 0.05,图 1B)。荧光定量qPCR结果表明:Ox-LDL明显提高ALP的活性(P < 0.05,图 1C),上调血管平滑肌细胞Msx2、BMP2、Osterix mRNA的表达水平,下调血管平滑肌收缩蛋白SMA和SM22α mRNA的表达水平(P < 0.05,图 1D)。

图 1 Ox-LDL对血管平滑肌细胞钙化的影响 Figure 1 Effect of Ox-LDL on calcification of human VSMCs (n=3). A: Calcification was detected by Alizarin red staining. B: Calcium content in the cells; C: ALP activity in the cells; D: mRNA expressions of Msx2, BMP2, Osterix, SMA and SM22α detected by qPCR at day 10. Compared with N-LDL. Scale bar=100 μm. (*P < 0.05, **P < 0.01 vs control).
2.2 槲皮素减轻Ox-LDL诱导的血管平滑肌细胞钙化

与Ox-LDL组比较,槲皮素组的血管平滑肌细胞钙化明显减轻(P < 0.05,图 2A)。槲皮素可降低细胞钙离子浓度(P < 0.05,图 2B)。

图 2 槲皮素对Ox-LDL诱导的血管平滑肌细胞钙化的作用 Figure 2 Effect of quercetin on Ox-LDL-induced human VSMC calcification (n=3). A: Cell calcification detected by Alizarin red staining. B: Calcium contents in the cells. Compared with Ox-LDL, Scale bar=50 μm. (*P < 0.05, **P < 0.01 vs control).
2.3 槲皮素减轻Ox-LDL诱导的血管平滑肌细胞成骨样分化

槲皮素可降低ALP活性(P < 0.05,图 3A),下调Msx2、BMP2、Osterix mRNA的表达水平,上调收缩蛋白SMA和SM22α mRNA的表达水平(P < 0.05,图 3B)。

图 3 槲皮素对Ox-LDL诱导的血管平滑肌细胞成骨样分化的影响。 Figure 3 Effect of quercetin on human VSMC osteogenic differentiation induced by Ox-LDL (n=3). A: ALP activity in the cells; B: mRNA expressions of Msx2, BMP2, Osterix, SMA and SM22α assessed by qPCR. Compared with Ox-LDL (*P < 0.05 vs control).
2.4 槲皮素下调血管平滑肌细胞ROS/TLR4信号通路

Ox-LDL可降低SOD的活性,而槲皮素能明显提高SOD的活性(P < 0.05,图 4A);Ox-LDL可提高氧化活性物质ROS的含量,使用槲皮素能降低ROS的水平(P < 0.05,图 4B);此外,Ox-LDL可上调TLR4的表达水平,槲皮素能下调TLR4的表达水平(P < 0.05,图 4C)。

图 4 槲皮素对血管平滑肌细胞ROS/TLR4信号的影响 Figure 4 Effect of quercetin on ROS/TLR4 signaling in human VSMCs (n=3). Human VSMCs were treated with Quercetin in the presence of Ox-LDL for 10 days. A: SOD activity in the cells; B: ROS levels in the cells; C: TLR4 mRNA expression detected by qPCR. Compared with N-LDL, *P < 0.05; Compared with Ox-LDL, #P < 0.05.
2.5 敲低TLR4减轻Ox-LDL诱导的血管平滑肌细胞钙化

与对照组Scrambled siRNA比较,转染TLR4 siRNA的细胞TLR4表达水平下降90%(P < 0.05,图 5A)。TLR4 siRNA能明显抑制血管平滑肌细胞钙化(P < 0.05,图 5B),降低ALP的活性(P < 0.05,图 5C),下调Msx2、BMP2和Osterix mRNA的表达,以及上调SMA和SM22α mRNA的表达(P < 0.05,图 5D)。

图 5 敲低TLR4对Ox-LDL诱导的平滑肌细胞钙化的影响 Figure 5 Effect of TLR4 siRNA on calcification of human VSMCs (n=3). Human VSMCs tansfected with TLR4 siRNA were treated with calcifying medium for 10 days. A: TLR4 mRNA expression analyzed by qRT-PCR on day 2; B: Calcium contents in the cells; C: ALP activity in the cells; D: mRNA expression of Msx2, BMP2, Osterix, SMA and SM22α assessed by qPCR at day 10. Compared with Scrambled siRNA, *P < 0.05.
3 讨论

血管钙化的发生受到钙化因子的调控,其过程与骨生成的过程类似。在钙化的血管可检测到高水平表达的骨相关蛋白如Runx2、Msx2、Osterix和BMP2等,而血管平滑肌细胞收缩蛋白的表达下调[20-22]。本研究报道槲皮素可通过抑制ROS/TLR4信号通路减轻Ox-LDL诱导的血管平滑肌钙化,为血管钙化的防治提供了新的线索。

Ox-LDL诱导细胞钙化的关键是细胞氧化应激,抑制氧化应激可明显改善细胞钙化[23-24]。动物实验也证明了氧化应激参与了血管钙化的调控过程[5]。本实验表明:Ox-LDL可提高血管平滑肌细胞ROS的水平,降低SOD活性,增强细胞氧化应激,从而促进细胞成骨样分化和钙化。已有研究报道Ox-LDL能促进血管平滑肌细胞TLR4的表达水平上调[17, 25]。我们以前的研究表明Ox-LDL可通过上调TLR4的表达水平参与血管平滑肌细胞钙化的调控[17]。本研究也证实:Ox-LDL能明显上调血管平滑肌细胞的TLR4的表达水平,敲低TLR4的表达水平可明显抑制细胞钙化,进一步证实了TLR4介导了Ox-LDL诱导的血管平滑肌细胞钙化。

槲皮素可通过清除氧自由基,抑制脂质过氧化发挥其对心血管疾病的保护作用[26-27]。氧化应激可通过上调成骨样分化转录因子促进血管钙化[28]。然而槲皮素对Ox-LDL诱导的血管钙化的作用,尤其是确切的机制尚不清楚。本研究发现:槲皮素可明显抑制Ox-LDL诱导的氧化应激,下调TLR4的表达水平,减轻Ox-LDL诱导的细胞钙化和抑制血管平滑肌细胞成骨样分化。这些结果说明:槲皮素可通过调控ROS/TLR4信号抑制血管平滑肌细胞钙化。

综上所述,Ox-LDL作用于血管平滑肌细胞后激活ROS/TLR4信号通路,促进血管平滑肌细胞成骨样分化和钙化。槲皮素可通过阻断ROS/TLR4信号通路抑制血管平滑肌细胞钙化。体内动物实验有望进一步证实槲皮素对血管钙化的抑制作用。

参考文献
[1]
Sallam T, Cheng H, Demer LL, et al. Regulatory circuits controlling vascular cell calcification[J]. Cell Mol Life Sci, 2013, 70(17): 3187-97. DOI: 10.1007/s00018-012-1231-y.
[2]
Bastos Gonçalves F, Voûte MT, Hoeks SE, et al. Calcification of the abdominal aorta as an independent predictor of cardiovascular events: a meta-analysis[J]. Heart, 2012, 98(13): 988-94. DOI: 10.1136/heartjnl-2011-301464.
[3]
Cai Z, Ding Y, Zhang M, et al. Ablation of adenosine Monophosphate-Activated protein kinase α1 in vascular smooth muscle cells promotes Diet-Induced atherosclerotic calcification in vivo[J]. Circ Res, 2016, 119(3): 422-33. DOI: 10.1161/CIRCRESAHA.116.308301.
[4]
Durham AL, Speer MY, Scatena M, et al. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness[J]. Cardiovasc Res, 2018, 114(4): 590-600. DOI: 10.1093/cvr/cvy010.
[5]
Yamada S, Taniguchi M, Tokumoto M, et al. The antioxidant tempol ameliorates arterial medial calcification in uremic rats: important role of oxidative stress in the pathogenesis of vascular calcification in chronic kidney disease[J]. J Bone Miner Res, 2012, 27(2): 474-85. DOI: 10.1002/jbmr.539.
[6]
Mody N, Parhami F, Sarafian TA, et al. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells[J]. Free Radic Biol Med, 2001, 31(4): 509-19. DOI: 10.1016/S0891-5849(01)00610-4.
[7]
Sudo R, Sato F, Azechi T, et al. 7-Ketocholesterol-induced lysosomal dysfunction exacerbates vascular smooth muscle cell calcification via oxidative stress[J]. Genes Cells, 2015, 20(12): 982-91. DOI: 10.1111/gtc.12301.
[8]
Yan J, Stringer SE, Hamilton A, et al. Decorin GAG synthesis and TGF-β signaling mediate Ox-LDL-induced mineralization of human vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2011, 31(3): 608-15. DOI: 10.1161/ATVBAHA.110.220749.
[9]
Nègre-Salvayre A, Augé N, Camaré C, et al. Dual signaling evoked by oxidized LDLs in vascular cells[J]. Free Radic Biol Med, 2017, 106: 118-33. DOI: 10.1016/j.freeradbiomed.2017.02.006.
[10]
Liao L, Zhou Q, Song Y, et al. Ceramide mediates Ox-LDLinduced human vascular smooth muscle cell calcification via p38 mitogen-activated protein kinase signaling[J]. PLoS One, 2013, 8(12): e82379. DOI: 10.1371/journal.pone.0082379.
[11]
Tang Y, Xu Q, Peng H, et al. The role of vascular peroxidase 1 in ox-LDL-induced vascular smooth muscle cell calcification[J]. Atherosclerosis, 2015, 243(2): 357-63. DOI: 10.1016/j.atherosclerosis.2015.08.047.
[12]
Goettsch C, Rauner M, Hamann C, et al. Nuclear factor of activated T cells mediates oxidised LDL-induced calcification of vascular smooth muscle cells[J]. Diabetologia, 2011, 54(10): 2690-701. DOI: 10.1007/s00125-011-2219-0.
[13]
Higashimori M, Tatro JB, Moore KJ, et al. Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2011, 31(1): 50-7. DOI: 10.1161/ATVBAHA.110.210971.
[14]
Edfeldt K, Swedenborg J, Hansson GK, et al. Expression of tolllike receptors in human atherosclerotic lesions: a possible pathway for plaque activation[J]. Circulation, 2002, 105(10): 1158-61.
[15]
Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL[J]. Circulation, 2001, 104(25): 3103-8. DOI: 10.1161/hc5001.100631.
[16]
Yang K, Zhang XJ, Cao LJ, et al. Toll-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-density lipoprotein[J]. PLoS One, 2014, 9(4): e95935. DOI: 10.1371/journal.pone.0095935.
[17]
Song Y, Hou M, Li Z, et al. TLR4/NF-κB/ceramide signaling contributes to Ox-LDL-induced calcification of human vascular smooth muscle cells[J]. Eur J Pharmacol, 2017, 794: 45-51. DOI: 10.1016/j.ejphar.2016.11.029.
[18]
Abarikwu SO, Pant AB, Farombi EO. Quercetin decreases steroidogenic enzyme activity, NF-κB expression, and oxidative stress in cultured Leydig cells exposed to atrazine[J]. Mol Cell Biochem, 2013, 373(1/2): 19-28.
[19]
颜建云, 周芹, 于汇民, 等. 高糖激活WNT信号通路促进血管平滑肌细胞钙化[J]. 南方医科大学学报, 2015, 35(1): 29-33. DOI: 10.3969/j.issn.1673-4254.2015.01.06.
[20]
Tyson KL, Reynolds JL, Mcnair R, et al. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification[J]. Arterioscler Thromb Vasc Biol, 2003, 23(3): 489-94. DOI: 10.1161/01.ATV.0000059406.92165.31.
[21]
Steitz SA, Speer MY, Curinga G, et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers[J]. Circ Res, 2001, 89(12): 1147-54. DOI: 10.1161/hh2401.101070.
[22]
Lin ME, Chen TM, Wallingford MC, et al. Runx2 deletion in smooth muscle cells inhibits vascular osteochondrogenesis and calcification but not atherosclerotic lesion formation[J]. Cardiovasc Res, 2016, 112(2): 606-16. DOI: 10.1093/cvr/cvw205.
[23]
Parhami F, Morrow AD, Balucan J, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation - A possible explanation for the paradox of arterial calcification in osteoporotic patients[J]. Arterioscler Thromb Vasc Biol, 1997, 17(4): 680-7. DOI: 10.1161/01.ATV.17.4.680.
[24]
Aghagolzadeh P, Radpour R, Bachtler M, et al. Hydrogen sulfide attenuates calcification of vascular smooth muscle cells via KEAP1/ NRF2/NQO1 activation[J]. Atherosclerosis, 2017, 265: 78-86. DOI: 10.1016/j.atherosclerosis.2017.08.012.
[25]
Yin YW, Liao SQ, Zhang MJ, et al. TLR4-mediated inflammation promotes foam cell formation of vascular smooth muscle cell by upregulating ACAT1 expression[J]. Cell Death Dis, 2014, 5: e1574. DOI: 10.1038/cddis.2014.535.
[26]
Suganya N, Dornadula S, Chatterjee S, et al. Quercetin improves endothelial function in diabetic rats through inhibition of endoplasmic reticulum stress-mediated oxidative stress[J]. Eur J Pharmacol, 2018, 819: 80-8. DOI: 10.1016/j.ejphar.2017.11.034.
[27]
Luangaram S, Kukongviriyapan U, Pakdeechote P, et al. Protective effects of quercetin against phenylhydrazine-induced vascular dysfunction and oxidative stress in rats[J]. Food Chem Toxicol, 2007, 45(3): 448-55. DOI: 10.1016/j.fct.2006.09.008.
[28]
Byon CH, Javed A, Dai Q, et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling[J]. J Biol Chem, 2008, 283(22): 15319-27. DOI: 10.1074/jbc.M800021200.