文章快速检索     高级检索
  南方医科大学学报  2018, Vol. 38Issue (3): 283-288  DOI: 10.3969/j.issn.1673-4254.2018.03.07.
0

引用本文 [复制中英文]

李雯, 戚迪, 陈兰, 赵燕, 邓旺, 唐旭毛, 王导新. Vaspin通过PI3K/Akt通路发挥抗炎及血管内皮保护作用减轻脂多糖致急性呼吸窘迫综合征小鼠肺损伤[J]. 南方医科大学学报, 2018, 38(3): 283-288. DOI: 10.3969/j.issn.1673-4254.2018.03.07.
LI Wen, QI Di, CHEN Lan, ZHAO Yan, DENG Wang, TANG Xumao, WANG Daoxin. Vaspin protects against lipopolysaccharide-induced acute respiratory distress syndrome in mice by inhibiting inflammation and protecting vascular endothelium via PI3K/Akt signal pathway[J]. Journal of Southern Medical University, 2018, 38(3): 283-288. DOI: 10.3969/j.issn.1673-4254.2018.03.07.

基金项目

国家自然科学基金(81670071)

作者简介

李雯,住院医师,在读硕士研究生,E-mail: jayjane1121@qq.com

通信作者

王导新,教授,主任医师,博士研究生导师,电话:023-63693094,E-mail: wangdaoxin1@163.com

文章历史

收稿日期:2017-08-11
Vaspin通过PI3K/Akt通路发挥抗炎及血管内皮保护作用减轻脂多糖致急性呼吸窘迫综合征小鼠肺损伤
李雯 , 戚迪 , 陈兰 , 赵燕 , 邓旺 , 唐旭毛 , 王导新     
重庆医科大学附属第二医院呼吸内科,重庆 400010
摘要: 目的 探讨Vaspin对LPS致ARDS小鼠的保护作用及其可能机制。方法 40只雄性C57BL/6J小鼠按随机数字表分为对照组、LPS组、Vaspin组和wortmannin(PI3K抑制剂)组,每组10只。苏木精-伊红(HE)染色观察肺组织病理改变,肺湿干比评估肺水肿,BCA法检测支气管肺泡灌洗液(BALF)中蛋白含量,评估肺组织通透性改变;髓过氧化物酶(MPO)试剂盒检测肺组织MPO活性,ELISA检测肺组织中白细胞介素(IL-1β)和肿瘤坏死因子(TNF-α)的含量,免疫组织化学法(IHC)观察肺组织中VCAM-1表达;Western blot法检测肺组织cleaved caspase-3和Akt磷酸化水平。结果 与对照组比较,LPS组小鼠肺组织呈现典型ARDS病理改变,肺组织湿干比W/D值、BALF蛋白含量、肺组织MPO活性、IL-1β和TNF-α水平,肺组织VCAM-1表达及cleaved caspase-3蛋白表达水平显著增高(P < 0.05),而p-Akt蛋白表达明显下调(P < 0.05);Vaspin干预能显著缓解上述变化(P < 0.05);而wortmannin组与Vaspin组相比,其湿干比W/D值、BALF蛋白含量、MPO活性和IL-1β、TNF-α及cleaved caspase-3蛋白表达水平显著升高(P < 0.05),伴Akt磷酸化水平显著下调(P < 0.05)。结论 Vaspin可通过其介导的抗炎、抗凋亡及血管内皮保护效应对LPS致ARDS肺损伤发挥保护性调控,其可能机制为上调了PI3K/Akt通路。
关键词: 急性呼吸窘迫综合征    Vaspin    炎症    血管内皮    PI3K/Akt    
Vaspin protects against lipopolysaccharide-induced acute respiratory distress syndrome in mice by inhibiting inflammation and protecting vascular endothelium via PI3K/Akt signal pathway
LI Wen, QI Di, CHEN Lan, ZHAO Yan, DENG Wang, TANG Xumao, WANG Daoxin     
Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
Supported by National Natural Science Foundation of China (81670071)
Abstract: Objective To investigate the effects of Vaspin on lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) in mice and explore the possible mechanism. Methods Forty male C57B/L6 mice were randomized equally into control group, LPS group, Vaspin group and wortmannin group with corresponding treatments. The pathological changes of the lung tissues were evaluated by HE staining, and the severity of pulmonary edema was measured according to the wet/ dry ratio (W/D) of the lung tissue. The lung permeability was evaluated by detecting total protein concentrations in the bronchoalveolar lavage fluid (BALF) using bicinchoninic acid (BCA) assay. Myeloperoxidase (MPO) activity in the lung tissue was detected using a MPO assay kit, and the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the lungs were measured using ELISA. Immunohistochemical staining was performed to detect the expression of vascular cell adhesion molecule-1 (VCAM-1) and Western blotting was used to detect the protein expressions of cleaved caspase-3 and p-Akt in the lung tissues. Results Compared with the control group, the mice in LPS group displayed typical ARDS pathological changes in the lungs with significantly increased W/D, total protein concentrations in BALF, lung MPO activity, levels of IL-1β and TNF-α, and pulmonary expressions of VCAM-1 and cleaved caspase-3 (P < 0.05) but decreased expression of p-Akt (P < 0.05). These changes induced by LPS were significantly alleviated by the administration of Vaspin (P < 0.05). The protective effects of Vaspin against ARDS were obviously attenuated by the PI3K inhibitor wortmannin (P < 0.05). Conclusions Vaspin protects against LPS-induced ARDS in mice possibly by inhibiting inflammation and protecting vascular endothelium through upregulation of the PI3K/Akt signal pathway.
Key words: acute respiratory distress syndrome    Vaspin    inflammation    vascular endothelial    PI3K/Akt signal pathway    

急性呼吸窘迫综合症(ARDS)是由非心源性的各种肺内外致病因素导致的急性、进行性、缺氧性呼吸衰竭,病死率高[1-2]。其发病机制复杂,大量研究表明,肺部过度炎症反应及肺微血管内皮细胞屏障功能受损是ARDS发生、发展的关键因素[2-3]

内脏脂肪组织来源的丝氨酸蛋白酶抑制剂,简称Vaspin(serpinA12)是一种新型脂肪细胞因子,属于丝氨酸蛋白酶抑制剂serpin家族成员之一[4]。研究发现Vaspin可调控血管内皮细胞的炎性因子、粘附分子及趋化因子的表达,且能对抗细胞凋亡,对血管内皮具有保护作用[5-6]。然而国内外尚未见Vaspin与ARDS关联及对其影响的相关报道。基于炎症反应爆发和肺泡毛细血管弥漫性损伤是ARDS的主要病理改变[2],我们推测Vaspin可通过其介导的抗炎及血管内皮保护效应对ARDS肺损伤发挥保护性调控。

故此,本研究通过气管内滴注LPS建立小鼠ARDS模型,探究Vaspin对小鼠ARDS的保护作用,并进一步探讨其潜在的调控机制。

1 材料和方法 1.1 实验动物

40只SPF级雄性C57BL/6小鼠(6~8周龄,体质量20.0±2.0 g),购自重庆医科大学动物实验中心,并自由饮食、普通光照饲养于重庆医科大学动物实验中心。

1.2 实验试剂

脂多糖(lipopolysaccharide, LPS)购自Sigma、PI3K抑制剂渥曼青霉素(wortmannin)购自solarbio公司、Vaspin购自novoprotein公司;RIPA裂解液(RIPA Lysis Buffer)、PMSF及BCA蛋白浓度测定试剂盒购自碧云天生物科技研究所;酶联免疫吸附试验(ELISA)试剂盒购自联科生物科技有限公司;髓过氧化物酶(MPO)测试盒购自南京建成生物工程研究所;SDSPAGE凝胶配制试剂盒购自碧云天生物科技研究所;预染Marker购于Thermo公司;β-肌动蛋白(β-actin)、Akt及p-Akt抗体购自bioworld公司,VCAM-1抗体购自abcam公司,caspase-3、cleaved caspase-3抗体购自万类生物公司;Super Sensitive TM即用型超敏免疫组化二抗试剂盒(鼠/兔)购自南京Bioworld生物科技有限公司,ECL检测试剂盒购自南京凯基生物科技有限公司。

1.3 ARDS小鼠模型建立

40只小鼠随机分为对照组、模型组(LPS组)、Vaspin组、渥曼青霉素组(wortmannin组),每组10只。小鼠称重后,腹腔注射4%水合氯醛(0.2 mL/20 g)麻醉小鼠。LPS组、Vaspin组及wortmannin组小鼠通过气管插管按5 mg/kg剂量滴注无菌LPS(10 μg LPS溶于50 μL无菌生理盐水)建立ARDS模型,对照组给予等量无菌生理盐水。Vaspin组及wortmannin组于LPS注射后立即腹腔注射Vaspin(0.1 μg/kg)。wortmannin组分别于LPS注射前、后90 min给予PI3K抑制剂渥曼青霉素(0.06 mg/kg),Vaspin组给予等量无菌生理盐水。

1.4 苏木素-伊红(HE)染色观察小鼠肺组织病理变化

24 h后处死小鼠,取右下肺组织,4%多聚甲醛固定,制成5 μm石蜡切片,HE染色,光镜观察。

1.5 小鼠肺组织湿干比(W/D)评估肺水肿

取小鼠左下肺组织,放置于事先称重的锡箔纸上称量肺湿重,将样本放置于60 ℃烤箱72 h至恒重后,称量其干重。根据公式计算肺湿干比(W/D)值。

1.6 小鼠支气管肺泡灌洗液(BALF)检测

将1 mL无菌PBS反复灌注小鼠肺组织3次,收集BALF,确保回收率大于90%。并于4 ℃ 12 000 r/min离心30 min,取上清液,按BCA蛋白测定试剂盒说明测定BALF总蛋白含量。

1.7 小鼠肺组织MPO活性检测

按MPO测试盒要求,测定肺组织匀浆中MPO活性。

1.8 ELISA检测肺组织中炎症因子水平

取小鼠右肺组织,冰PBS漂洗后制备肺组织匀浆,按ELISA试剂盒要求测肺组织中IL-1β和TNF-α的含量。

1.9 免疫组织化学法(IHC)观察肺组织中血管细胞间粘附分子(VCAM-1)表达

取右上肺组织,4%多聚甲醛固定,常规脱水,石蜡包埋,切片厚度为5 μm,60 ℃烤片1 h后,按Super Sensitive TM免疫组化试剂盒要求操作:石蜡切片二甲苯脱蜡,梯度乙醇水化,枸橼酸盐缓冲液(pH 6.0)微波炉抗原修复,3%过氧化氢阻断内源性过氧化物酶,免疫性动物血清常温封闭,加入抗体VCAM-1(1:500)过夜孵育,37 ℃复温35 min,PBS漂洗,加入一抗放大剂室温孵育30 min,PBS漂洗后滴加辣根过氧化物酶(HRP)聚合物(二抗)室温避光孵育30 min,PBS漂洗后DAB显色,苏木素复染,梯度乙醇脱水,二甲苯透明,中性树胶封片,光镜下观察,并记录。

1.10 Western blot法检测肺组织cleaved caspase-3和Akt磷酸化水平

使用RIPA裂解液及PMSF提取小鼠肺组织总蛋白,BCA法测定蛋白浓度,蛋白样品-80 ℃保存,并行聚丙烯酰氨凝胶电泳分离蛋白,湿转法转移至聚偏二氟乙烯膜(PVDF膜),5%脱脂奶粉或者5% BSA封闭1 h,分别加入cleaved caspase-3抗体(1:500)、caspase-3抗体(1:500)、p-Akt抗体(1:800)、Akt抗体(1:800)及β-actin抗体(1:5000)4 ℃孵育过夜。TBST洗膜10 min,共3次,加入相应HRP标记的二抗(1: 10 000)37 ℃孵育1 h,再以TBST洗膜10 min,共3次,最后ECL显色,凝胶成像,Quantity One软件分析各条带吸光度值。

1.11 统计学处理

采用SPSS18.0统计软件进行统计学处理。计量资料据采用均数±标准差表示,组间比较采用one-way ANOVA分析,各组均数间两两比较采用SNK-q检验,以P < 0.05为差异有统计学意义。

2 结果 2.1 HE染色观察肺组织病理变化

对照组肺组织结构清晰,肺泡间隔无增宽,肺泡腔未见炎性细胞及渗出物;LPS组见肺泡间隔增宽,肺泡腔内及间质充血水肿明显伴大量炎性细胞浸润;Vaspin组肺组织损伤明显减轻,间隔轻度增宽,肺泡腔内出血水肿减轻,炎性细胞浸润减轻;wortmannin组病理改变介于LPS组与Vaspin之间(图 1)。

图 1 小鼠的肺组织病理改变 Figure 1 Pathological changes in the lung tissues (Original magnification: ×400)
2.2 小鼠肺组织W/D比较

与对照组比较,LPS组、Vaspin组及wortmannin组小鼠肺组织W/D均显著增高(P < 0.05),其中Vaspin组小鼠肺组织W/D值较LPS组及wortmannin组明显减轻(P < 0.05,图 2)。

图 2 肺组织湿/干重比、BALF中蛋白含量及肺MPO活性的测定 Figure 2 Lung wet/dry weight (W/D) ratio, total protein level in the BALF and pulmonary MPO activity in different groups (Mean±SD, n=3 or 4). *P < 0.05 vs control group; #P < 0.05 vs LPS group; P < 0.05 vs Vaspin group
2.3 小鼠BALF中总蛋白含量比较

与对照组比较,LPS组、Vaspin组及wortmannin组小鼠BALF中总蛋白含量明显增高(P < 0.05),其中Vaspin组BALF中总蛋白含量较LPS组和wortmannin组明显降低(P < 0.05,图 2)。

2.4 小鼠肺组织MPO活性比较

与对照组比较,LPS组、Vaspin组及wortmannin组小鼠肺组织MPO活性均显著增高(P < 0.05),其中Vaspin组小鼠肺组织MPO活性较LPS组及wortmannin组明显降低(P < 0.05,图 2)。

2.5 小鼠肺组织中炎症因子水平比较

与对照组比较,LPS组、vaspin组及wortmannin组小鼠肺组织中IL-1β和TNF-α含量均有显著增加(P < 0.05),其中vaspin组肺组织中IL-1β和TNF-α含量较LPS组和wortmannin组均有显著降低(P < 0.05,图 3)。

图 3 肺组织中IL-1β含量及TNF-α含量的测定 Figure 3 Levels of IL-1β and TNF-α in the lung tissue in different groups (Mean±SD, n=4). *P < 0.05 vs control group; #P < 0.05 vs LPS group; P < 0.05 vs Vaspin group
2.6 IHC法检测小鼠肺组织VCAM-1表达

各组小鼠肺组织血管内皮细胞均呈现阳性信号(棕黄色颗粒),即各组小鼠肺组织血管内皮均表达VCAM-1蛋白,其中对照组肺血管内皮细胞染色最浅,LPS组肺血管内皮细胞染色最深,呈深棕黄色,即VCAM-1表达显著升高(P < 0.05),而vaspin干预后,染色明显变淡,即VCAM-1表达显著下调(P < 0.05,图 4)。

图 4 肺组织VCAM-1的表达检测 Figure 4 Expression of VCAM-1 in the lung tissue in different group (Immunohistochemical staining, × 400). A: Control group; B: LPSgroup; C: Vaspin group; D: Wortmannin group
2.7 Western blot法检测小鼠肺组织cleaved caspase-3表达和Akt磷酸化水平

与对照组比较,LPS组cleaved caspase-3蛋白表达明显升高(P < 0.05),vaspin干预后,cleaved caspase-3明显下调(P < 0.05),而wortmannin组较vaspin组表达明显升高(P < 0.05);与对照组、LPS组及wortmannin组相比,vaspin组小鼠肺组织中P-Akt表达水平明显上调(P < 0.05),而LPS组、wortmannin组较对照组表达明显下调(P < 0.05,图 56)。

图 5 Cleaved caspase-3的蛋白水平检测 Figure 5 Protein level of cleaved caspase-3 in the the lung tissues in different groups determined by Western blotting (Mean ± SD, n=4). *P < 0.05 vs control group; #P < 0.05 vs LPS group; P < 0.05 vs Vaspin group
图 6 p-Akt的蛋白水平检测 Figure 6 Protein level of p-Akt in the lung tissues in different groups determined by Western blotting (Mean±SD, n=4). *P < 0.05 vs control group; #P < 0.05 vs LPS group; P < 0.05 vs Vaspin group
3 讨论

ARDS病死率高,治疗效果欠佳[7],虽不是典型的血管性疾病,但研究表明,肺血管内皮细胞屏障及功能障碍是ARDS的重要发病机制[8]。近年来,大量研究证实多种脂肪因子(如Adiponectin、Omentin等)对ARDS发挥保护性调控[9-10],其中新近发现的脂肪因子Vaspin因其抗炎、抗凋亡及抗氧化应激等作用对血管内皮有保护性作用[5-6, 11-12]。因此,我们通过气管插管滴注LPS建立肺内源性ARDS小鼠模型,探讨Vaspin对小鼠ARDS的保护作用。结果发现,Vaspin预处理能显著改善小鼠肺组织病理改变,并明显减轻肺水肿及降低BALF蛋白含量,说明Vaspin可减轻ARDS肺损伤并改善肺微血管通透性。MPO是中性粒细胞(PMN)聚集及活化的标志[13],研究证实PMN活化后释放多种炎症介质,包括TNF-α、IL-1β等,可引发炎症级联,诱导炎症细胞浸润,增加肺微血管通透性,最终导致肺损伤[14-15]。本实验中,Vaspin干预后肺组织MPO活性,肺组织匀浆中IL-1β和TNF-α水平均明显降低,表明Vaspin对ARDS具有抗炎保护作用。另一方面,血管细胞间粘附分子(VCAM-1)主要由血管内皮细胞表达。正常生理条件下,肺血管内皮细胞不表达或者仅少量表达VCAM-1,内毒素、促炎因子等刺激致粘附分子大量表达,介导炎性细胞与肺血管内皮细胞粘附,损伤肺内皮细胞导致内皮细胞通透性增加,进一步导致肺组织的损伤[16-17]。经Vaspin干预后,VCAM-1的表达显著降低,表明Vaspin可以直接降低粘附分子的表达,减少炎性细胞与肺内皮细胞粘附聚集,从而减轻急性肺损伤。

肺内皮细胞过度凋亡将导致肺微血管屏障完整性缺失,在ARDS发生发展过程中起重要作用[18],细胞凋亡作为细胞程序性死亡,受半胱氨酸蛋白酶(Caspase)家族的调节,其中caspase 3是多条凋亡通路的汇聚点,剪切型caspase 3(cleaved caspase-3)活化将导致细胞凋亡的发生,提示凋亡已进入不可逆阶段,检测cleaved caspase-3可间接发现细胞凋亡情况[19-20]。本实验通过对cleaved caspase-3蛋白的测定证实,vaspin干预后小鼠的cleaved caspase-3蛋白表达显著降低,提示vaspin可能对LPS致小鼠ARDS肺组织有抗凋亡保护作用。

磷脂酰肌醇3-激酶(PI3K)及其靶蛋白-蛋白激酶B是细胞内重要的信号传导通路,可通过影响其下游多种效应分子的活性,对细胞凋亡、增殖等发挥重要作用[21],近年来,大量体内外实验证实,PI3K/Akt信号通路在LPS诱导的急性炎症反应中发挥重要的负向调节作用[22-23],而本课题组前期实验证实上调PI3K/Akt信号通路对ARDS有保护作用[9, 24]。研究发现,vaspin可上调PI3K/ Akt信号通路对游离脂肪酸诱导的内皮细胞起抗凋亡作用[6]以及激活PI3K/Akt/eNOS信号通路缓解高糖诱导的内皮祖细胞功能紊乱[25]。因此,我们大胆假设,vaspin可通过激活PI3K/Akt通路对ARDS发挥保护性调控,本实验中LPS组p-Akt蛋白水平降低,vaspin干预可明显上调肺组织p-Akt的表达。而PI3K抑制剂渥曼青霉素能阻断vaspin的保护效应及其引起的Akt磷酸化,表明vaspin可能至少部分通过上调PI3K/Akt信号通路改善肺微血管通透性,抑制肺部炎症及肺内皮细胞凋亡,从而对肺内皮细胞起保护作用,但其具体分子机制还需进一步研究。

综上所述,Vaspin可通过其介导的抗炎及血管内皮保护效应,对ARDS肺损伤发挥保护性调控,其可能机制为激活了PI3K/Akt信号通路,为ARDS的防治提供了新思路。

参考文献
[1]
Ranieri VM, Rubenfeld GD, Thompson B, et al. Acute respiratory distress syndrome the Berlin definition[J]. JAMA, 2012, 307(23): 2526-33.
[2]
Bijli KM, Fazal F, Slavin SA, et al. Phospholipase C-ε signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311(2): L517-24. DOI: 10.1152/ajplung.00069.2016.
[3]
Maniatis NA, Orfanos SE. The endothelium in acute lung injury/ acute respiratory distress syndrome[J]. Curr Opin Crit Care, 2008, 14(1): 22-30. DOI: 10.1097/MCC.0b013e3282f269b9.
[4]
Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor: A unique insulin-sensitizing adipocytokine in obesity[J]. Proc Natl Acad Sci USA, 2005, 102(30): 10610-5.
[5]
Liu S, Dong Y, Wang T, et al. Vaspin inhibited proinflammatory cytokine induced activation of nuclear factor-kappa B and its downstream molecules in human endothelial EA.hy926 cells[J]. Diabetes Res Clin Pract, 2014, 103(3): 482-8.
[6]
Jung CH, Lee WJ, Hwang JY, et al. Vaspin protects vascular endothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol 3-kinase/Akt pathway[J]. Biochem Biophys Res Commun, 2011, 413(2): 264-9. DOI: 10.1016/j.bbrc.2011.08.083.
[7]
Phua J, Badia JR, Adhikari NK, et al. Has mortality from acute respiratory distress syndrome decreased over time?: A systematic review[J]. Am J Respir Crit Care Med, 2009, 179(3): 220-7.
[8]
Maniatis NA, Kotanidou A, Catravas JD, et al. Endothelial pathomechanisms in acute lung injury[J]. Vascul Pharmacol, 2008, 49(4/6): 119-33.
[9]
Wang C. Obesity, inflammation, and lung injury (OILI): the good[J]. Mediators Inflamm, 2014, 2014(1): 978463.
[10]
Qi D, Tang X, He J, et al. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism[J]. Cell Death Dis, 2016, 7(9): e2360. DOI: 10.1038/cddis.2016.265.
[11]
Zieger K, Weiner J, Krause K, et al. Vaspin suppresses cytokineinduced inflammation in 3T3-L1 adipocytes via inhibition of NFκB pathway[J]. Mol Cell Endocrinol, 2018, 460: 181-8. DOI: 10.1016/j.mce.2017.07.022.
[12]
Phalitakul S, Okada M, Hara Y, et al. Vaspin prevents methylglyoxal-induced apoptosis in human vascular endothelial cells by inhibiting reactive oxygen species generation[J]. Acta Physiol (Oxf), 2013, 209(3): 212-9.
[13]
Huang WC, Lai CL, Liang YT, et al. Phloretin attenuates LPSinduced acute lung injury in mice via modulation of the NF-κB and MAPK pathways[J]. Int Immunopharmacol, 2016, 40: 98-105. DOI: 10.1016/j.intimp.2016.08.035.
[14]
Williams AE, José RJ, Mercer PF, et al. Evidence for chemokine synergy during neutrophil migration in ARDS[J]. Thorax, 2017, 72(1): 66-73. DOI: 10.1136/thoraxjnl-2016-208597.
[15]
Ma C, Zhu L, Wang J, et al. Anti-inflammatory effects of water extract of Taraxacum mongolicum hand.-Mazz on lipopolysaccharide-induced inflammation in acute lung injury by suppressing PI3K/Akt/mTOR signaling pathway[J]. J Ethnopharmacol, 2015, 168: 349-55. DOI: 10.1016/j.jep.2015.03.068.
[16]
Ley K. Molecular mechanisms of leukocyte recruitment in the inflammatory process[J]. Cardiovasc Res, 1996, 32(4): 733-42. DOI: 10.1016/S0008-6363(96)00066-1.
[17]
Huang YC, Horng CT, Chen ST, et al. Rutin improves endotoxininduced acute lung injury via inhibition of iNOS and VCAM-1 expression[J]. Environ Toxicol, 2016, 31(2): 185-91.
[18]
Galani V, Tatsaki E, Bai M, et al. The role of apoptosis in the pathophysiology of Acute Respiratory Distress Syndrome (ARDS): an up-to-date cell-specific review[J]. Pathol Res Pract, 2010, 206(3): 145-50. DOI: 10.1016/j.prp.2009.12.002.
[19]
Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis[J]. Cell Death Differ, 1999, 6(2): 99-104.
[20]
Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis[J]. Acta Biochim Biophys Sin (Shanghai), 2005, 37(11): 719-27. DOI: 10.1111/abbs.2005.37.issue-11.
[21]
Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer[J]. Apoptosis, 2004, 9(6): 667-76. DOI: 10.1023/B:APPT.0000045801.15585.dd.
[22]
Zhang Y, Li P, Gao Q, et al. 2-Methoxyestradiol prevents monocyte adhesion to vascular endothelial cells via downregulation of VCAM-1 expression[J]. Gynecol Endocrinol, 2016, 32(7): 571-6. DOI: 10.3109/09513590.2016.1141880.
[23]
Schabbauer G, Tencati M, Pedersen B, et al. PI3K-Akt pathway suppresses coagulation and inflammation in endotoxemic mice[J]. Arterioscler Thromb Vasc Biol, 2004, 24(10): 1963-9.
[24]
Qi D, He J, Wang D, et al. 17β-estradiol suppresses lipopolysaccharide-induced acute lung injury through PI3K/Akt/SGK1 mediated up-regulation of epithelial sodium channel (ENaC) in vivo and in vitro[J]. Respir Res, 2014, 15(1): 159.
[25]
Sun N, Wang H, Wang L. Vaspin alleviates dysfunction of endothelial progenitor cells induced by high glucose via PI3K/Akt/ eNOS pathway[J]. Int J Clin Exp Pathol, 2015, 8(1): 482-9.