文章快速检索     高级检索
  南方医科大学学报  2017, Vol. 37Issue (10): 1386-1390  DOI: 10.3969/j.issn.1673-4254.2017.10.17.
0

引用本文 [复制中英文]

王悦, 许文宁, 吴小芳, 朱林楠, 乔红花, 陈玲, 刘超, 邱平明. 亚硝基化的二硫键异构酶介导甲基苯丙胺致小鼠相关脑区α-突触核蛋白表达升高[J]. 南方医科大学学报, 2017, 37(10): 1386-1390. DOI: 10.3969/j.issn.1673-4254.2017.10.17.
WANG Yue, XU Wenning, WU Xiaofang, ZHU Linnan, QIAO Honghua, CHEN Ling, LIU Chao, QIU Pingming. S-nitrosylating protein disulphide isomerase mediates increased expression of α-synuclein caused by methamphetamine in mouse brain[J]. Journal of Southern Medical University, 2017, 37(10): 1386-1390. DOI: 10.3969/j.issn.1673-4254.2017.10.17.

基金项目

国家自然科学基金(81373240);广东省自然科学基金(2014A030313300,2014A030310025)

作者简介

王悦,硕士研究生,E-mail:xye0908@126.com;
许文宁,在读硕士研究生,E-mail:xuwenningyu@163.com

通信作者

邱平明,主任法医师,博士,E-mail:qiupm@163.com

文章历史

收稿日期:2017-04-18
亚硝基化的二硫键异构酶介导甲基苯丙胺致小鼠相关脑区α-突触核蛋白表达升高
王悦1, 许文宁2, 吴小芳3, 朱林楠1, 乔红花1, 陈玲1, 刘超4, 邱平明1     
1. 南方医科大学法医学院, 广东 广州 510515;
2. 上海交通大学医学院附属新华医院, 上海 200092;
3. 顺德职业技术学院医药卫生学院, 广东 佛山 528000;
4. 广州市刑事科学技术研究所//广东省法医遗传学重点实验室, 广东广州 510030
摘要: 目的 研究亚硝基化的二硫键异构酶(PDI)对甲基苯丙胺(METH)致小鼠海马及纹状体区α-突触核蛋白(α-SN)表达的影响。方法 利用C57小鼠METH亚急性中毒模型,使用一氧化氮合酶(NOS)抑制剂N-硝基-L-精氨酸(L-NNA)与METH共同造模,实验分为对照组、L-NNA组、METH组、METH+L-NNA组。Western Blotting技术检测各组海马及纹状体区内一氧化氮合酶(NOS)、PDI及其S亚硝基化(PDI-SNO)和α-SN表达情况。一氧化氮试剂盒检测各组一氧化氮含量。结果 METH给药后NOS、一氧化氮含量、PDI-SNO、α-SN表达较对照组均明显升高(P < 0.05);L-NNA与METH共处理后与METH组对比,NOS表达下降(P < 0.05),一氧化氮含量明显减少(P < 0.05),能够显著抑制PDI-SNO表达(P < 0.05),伴随α-SN表达降低(P < 0.05)。而MET H+L-NNA组、L-NNA组与对照组比较均无明显差异(P>0.05)。结论 METH作用后诱导NOS活化,一氧化氮含量升高,PDI发生显著S亚硝基化而功能失活,导致相关脑区α-SN表达升高,而NOS抑制剂L-NNA能部分缓解METH神经毒性作用。
关键词: 甲基苯丙胺    二硫键异构酶    亚硝基化    α-突触核蛋白    一氧化氮合酶    
S-nitrosylating protein disulphide isomerase mediates increased expression of α-synuclein caused by methamphetamine in mouse brain
WANG Yue1, XU Wenning2, WU Xiaofang3, ZHU Linnan1, QIAO Honghua1, CHEN Ling1, LIU Chao4, QIU Pingming1     
1. School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
2. Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China;
3. Guangzhou Forensic Science Institute, Guangzhou 510030, China;
4. ${affiliationVo.addressStrEn}
Supported by National Natural Science Foundation of China (81373240)
Abstract: Objective To investigate the role of S-nitrosylation of protein disulphide isomerasec in methamphetamine (METH)-induced expression of alpha-synuclein (α-SN) in mouse hippocampus and striatum neurons. Methods Forty C57BL/6 mice were randomized equally into saline control group, METH group, L-NNA (a NOS inhibitor) group and L-NNA plus METH group. All the agents were injected intraperitoneally at an interval of 12 h, and a total of 8 injections were administered; in LNNA plus METH group, METH was injected 30 min after L-NNA in each treatment. Western Blotting was used to detect the expression of nitric oxide synthase (NOS), α-SN, PDI and S-nitrosylation of protein disulphide isomerase (PDI-SNO) in the hippocampus and striatum of the mice, and nitric oxide (NO) levels were determined using a NO assay kit. Results In METH group, the levels of NOS, PDI-SNO, α-SN and NO all increased significantly compared with those in the control group (P < 0.05). Combined treatment with L-NNA and METH, compared with METH alone, resulted in significantly lowered expression of NOS, NO, PDI-SNO and α-SN in the hippocampus and striatum of the mice (all P < 0.05). No significant differences were found in NOS, NO, PDI-SNO or α-SN expressions among METH+L-NNA, L-NNA and control groups (P>0.05). Conclusion METH induces the activation of NOS and increases NO level to cause the occurrence of PDI-SNO, leading subsequently to increased expression of α-SN in mouse striatum and hippocampus. L-NNA, the inhibitor of NOS, can partly relieve nervous system toxicity induced by METH.
Key words: methamphetamine    protein disulphide isomerasec    nitrosation    α-synuclein    nitric oxide synthase    

甲基苯丙胺(METH)属于苯丙胺类神经兴奋剂,在世界范围内被广泛滥用,是当前对公共卫生和社会危害最大的毒品之一[1-2]。研究表明METH主要作用于中枢神经系统,结构与儿茶酚胺类神经递质相似,主要表现为多巴胺等单胺类神经末梢的损伤,可出现与帕金森病等神经退行性疾病相似的病理改变[3-4]。近年来研究证实,多种机制参与了METH的神经毒性,主要包括氧化应激[5]、神经元凋亡与自噬[6-7]、兴奋性毒性[8]、线粒体功能障碍[9]等,其中氧化应激是METH所致神经毒性损伤的重要作用机制之一[10]。二硫键异构酶(PDI)是一种内质网滞留蛋白,在稳定蛋白质的三维结构中起着重要作用,同时还具有分子伴侣活性,能抑制错误折叠蛋白的聚集[11]。在神经退行性疾病的研究中发现,PDI可通过抑制错误折叠蛋白的聚集而起到保护神经元的作用。但PDI易与氧化应激产生的过量的NO结合,形成S亚硝基化PDI(PDI-SNO),导致其构象改变和功能障碍[12]。α-突触核蛋白(α-SN)既参与正常突触功能的维持,又与帕金森病等神经退行性疾病有关,在生理状态下处于无序伸展状态,没有细胞毒性,而在病理状态下,可引起α-SN错误折叠,在细胞内聚集形成纤维化或寡聚体[13-14]。研究认为聚集状态的α-SN能促进细胞的氧化应激增强,对神经元产生毒性作用,同时氧化应激又促进α-SN发生聚集,形成恶性循环[15]。前期体内外研究发现,METH可以导致NO水平明显升高,氧化应激显著增强[16-17]。PC12细胞在METH处理后,PDI发生S亚硝基化,α-SN表达明显升高并产生神经毒性[18],而关于METH对小鼠大脑的神经退行性病变的作用及其机制,尤其是PDI亚硝基化对METH致小鼠相关脑区α-SN表达的影响,未见相关报道。

基于此,本研究拟建立METH亚急性中毒小鼠模型,METH与一氧化氮合酶(NOS)抑制剂N-硝基-L-精氨酸(L-NNA)共同处理小鼠,检测NOS、NO、PDI、PDISNO和α-SN等指标,研究在METH致神经毒性中PDISNO对异常表达的α-SN的影响,进一步完善METH诱导的α-SN聚集的毒性机制,为治疗METH引起的神经毒性损伤提供理论基础。

1 材料和方法 1.1 材料和试剂

C57 BL/6小鼠购自广东省医学实验动物中心,盐酸甲基苯丙胺购自中国药品生物制品鉴定所,N-硝基-L-精氨酸(L-NNA)购自Sigma,兔抗鼠α-SN多克隆抗体购自CST,Cat no.#2642,兔抗鼠PDI多克隆抗体购自CST,Cat no. #2446,羊抗兔IgG-HRP购自北京锐抗公司,NO检测试剂盒购自南京建成生物工程研究所,其他试剂均为国产分析纯。

1.2 实验方法 1.2.1 METH亚急性中毒小鼠模型及药物处理

取6周龄雄性C57小鼠40只,分笼饲养于22 ℃恒温动物房内,自由进水进食,建立12 h黑夜和白昼的交替循环,让小鼠适应环境1周后随机分成4组(n=10只/组),对照(CON)组、L-NNA组、METH组和METH+L-NNA组。L-NNA组和METH组给予单次腹腔注射L-NNA(8 mg/kg)或METH(15 mg/kg),间隔12 h注射1次,共8次。METH+L-NNA组腹腔注射L-NNA 8 mg/kg,0.5 h后给予METH 15 mg/kg。对照组小鼠同等条件下腹腔注射生理盐水300 μL/只。最后1次给药24 h后麻醉、断颈、分离纹状体和海马脑区。

1.2.2 指标检测

Western Blotting法检测各组内NOS、PDI、α-SN等指标,生物素转化法对各组PDI-SNO进行转化后进行Western Blotting。NO含量用NO检验试剂盒检测。

1.3 统计方法

采用GraphPad Prism software Version 5.0a(GraphPad Software Inc., 美国)软件进行统计学分析,数据以均数±标准差表示,组间比较采用单因素方差分析,P < 0.05为差异有统计学意义。

2 结果 2.1 L-NNA对METH所致的小鼠脑区NOS表达影响

Western blotting检测纹状体和海马脑区内NOS表达情况,结果显示,METH组NOS表达较CON组显著增高(P < 0.05),且纹状体L-NNA组NOS表达较CON组明显降低(P < 0.05);而当L-NNA与METH共同处理C57小鼠时,L-NNA可显著降低METH诱导的NOS的上升(P < 0.05,图 1)。

图 1 小鼠脑区各组NOS表达变化 Figure 1 Changes of NOS protein expression in the mouse brain in different groups. A, C: Western blotting for detecting NOS in the striatum and hippocampus, respectively; B, D: Gray values of NOS determined by Image J software. Data represent average from 3 independent tests. *P < 0.05 vs control group; #P < 0.05 vs METH group.
2.2 L-NNA对METH所致的小鼠脑区NO含量变化

NO检验试剂盒检测纹状体和海马脑区NO含量,结果表明,METH组NO含量较CON组显著增多(P < 0.05);L-NNA组NO含量与CON组相比无明显差异(P > 0.05);当L-NNA与METH共同处理C57小鼠时,L-NNA可显著降低METH诱导的NO含量的上升(P < 0.05,图 2)。

图 2 小鼠脑区各组NO含量变化 Figure 2 Changes of NO level in the striatum (A) and hippocampus (B) of the mice in different groups. *P < 0.05 vs control group; #P < 0.05 vs METH group.
2.3 L-NNA对METH所致的小鼠脑区PDI-SNO表达影响

采用生物素转化法将纹状体和海马脑区内PDISNO标记并转化,再利用Western blotting检测转化后PDI蛋白表达变化。结果表明,两脑区内METH组与CON组相比,可使PDI亚硝基化表达显著升高(P < 0.05);L-NNA与METH共同处理组PDI-SNO含量较METH组明显降低(P < 0.05,图 3)。

图 3 小鼠脑区各组PDI-SNO表达变化 Figure 3 Changes of PDI-SNO level in the mouse brain in different groups. A, C: Western blotting for detecting PDISNO in the striatum and hippocampus regions, respectively; B, D: Gray values of PDI-SNO in the striatum and hippocampus determined by Image J software analysis, respectively. Data represent average from 3 independent tests. *P < 0.05 vs control group; #P < 0.05 vs METH group.
2.4 L-NNA对METH所致的小鼠脑区α-SN表达影响

Western blotting检测纹状体和海马脑区α-SN表达情况。结果表明,METH组α-SN含量均比CON组显著升高(P < 0.05),与前期的体外实验研究结果相一致;L-NNA组内α-SN含量与CON组无显著差异(P > 0.05),L-NNA与METH共处理C57小鼠,可有效抑制METH导致的α-SN的升高(P < 0.05,图 4)。

图 4 小鼠脑区各组α-SN表达变化 Figure 4 Changes of α-SN level in the mouse brain in different groups. A, C: Western blotting for detecting α-SN in the striatum and hippocampus, respectively; B, D: Analysis of gray values of α-SN using Image J software. Data represent average from 3 independent tests. *P < 0.05 vs control group; #P < 0.05 vs METH group.
3 讨论

METH作为世界上滥用最广泛的苯丙胺类兴奋剂,具有药物依赖性、中枢兴奋性、致幻、食欲抑制等药理、毒理学特性[19]。而由METH造成的神经退行性样改变[20-22]一直以来是我们关注的热点问题。

研究表明,黑质区多巴胺能神经元的丧失与蛋白聚集体——路易小体的形成是PD的两大病理特征,α-SN是Lewy体的重要组成成分,错误折叠的α-SN的聚集被认为是帕金森病(PD)发病机制的关键环节[23]。在METH致神经退行性样改变的研究过程中,METH作用后α-SN在纹状体、海马等脑区表达异常升高,并已证实α-SN在METH所致的氧化应激、多巴胺代谢障碍和线粒体功能丧失等神经毒性机制中起到关键作用。本研究前期使用METH处理分化的大鼠嗜铬细胞瘤PC12细胞,结果发现PDI发生显著的S亚硝基化,L-NNA与METH共同处理细胞,可通过抑制NOS,减少细胞内NO的生成量,进而显著降低METH所致的PDI-SNO程度,缓解METH所致的α-SN的升高,从而改善METH所致神经毒性作用[18, 24-25]。尽管我们前期研究发现METH所致的PDI-SNO对α-SN异常聚集有影响,但由于实验以PC12细胞系为模型,并不能真实反映METH作用后大脑神经元的毒性损伤变化,所以,为进一步阐明PDI-SNO在METH作用后对中枢神经系统内α-SN异常表达的影响,在体外研究基础上,本次实验利用小鼠METH亚急性中毒模型对神经毒性损伤明显的纹状体、海马脑区进行相关研究。并首次将NOS抑制剂LNNA应用于体内实验。结果发现,给予METH处理,在海马、纹状体区两个脑区,NO含量与PDI-SNO明显增加同时伴随α-SN表达升高;使用NOS抑制剂L-NNA与METH共处理C57小鼠,NO含量、PDI-SNO和α-SN表达均显著降低这表明L-NNA抑制NOS表达后,降低NO浓度从而减轻METH所致的神经毒性。这也间接证明了METH作用后NO含量升高,致使相关脑区氧化应激损伤[26],PDI发生显著S亚硝基化,导致α-SN表达升高[27-29]。上述动物相关脑区的实验结果对我们前期的研究发现更有说服力。

结合我们的体内外研究,可以明确PDI是降解异常聚集α-SN的重要蛋白。METH作用后NO含量升高,引起氧化应激损伤,导致PDI发生S亚硝基化,使其功能丧失,错误折叠的α-SN降解障碍而发生异常聚集,最终产生神经毒性。此外,我们认为关键功能蛋白的硝基化也是METH神经毒性损伤作用的重要机制之一,以往研究报道METH可通过DDAH1/ADMA/NOS通路引起蛋白质硝基化水平升高导致神经毒性[30-31],关键蛋白如谷胱甘肽S-转移酶P1的硝基化可激活细胞周期素依赖蛋白激酶5导致氧化应激损伤,加剧细胞的死亡[23]。由此,我们下一步将深入研究METH作用后氧化应激是否可以直接导致α-SN发生硝基化而影响其生物学功能,为阐明METH神经退行性病变的毒性机制奠定良好的基础。

参考文献
[1] 郝柳, 罗涛, 唐爱国, 等. 甲基苯丙胺滥用的研究进展[J]. 中国药物滥用防治杂志, 2015, 21(5): 302-6.
[2] Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death[J]. Brain Res Rev, 2009, 60(2): 379-407. DOI: 10.1016/j.brainresrev.2009.03.002.
[3] United Nations Office on Drugs and Crime. World Drug Report[R]. New York, NY:United Nations Publications:United Nations Office on Drugs and Crime.2016.
[4] Carvalho M, Carmo H, Costa VM, et al. Toxicity of amphetamines:an update[J]. Arch Toxicol, 2012, 86(8): 1167-231. DOI: 10.1007/s00204-012-0815-5.
[5] Hozumi H, Asanuma M, Miyazaki I, et al. Protective effects of interferon-gamma against methamphetamine-induced neurotoxicity[J]. Toxicol Lett, 2008, 106(1): 175P.
[6] Chen L, Huang EP, Wang HJ, et al. RNA interference targeting alpha-synuclein attenuates methamphetamine-induced neurotoxicity in SH-SY5Y cells[J]. Brain Res, 2013, 1521(8): 59-67.
[7] Li B, Chen R, Chen L, et al. Effects of DDIT4 in MethamphetamineInduced autophagy and apoptosis in dopaminergic neurons[J]. Mol Neurobiol, 2017, 54(3): 1642-60. DOI: 10.1007/s12035-015-9637-9.
[8] Tats DA, Yamamoto BK. Chronic stress enhances metham. phetamine-induced extracellalar glutamate and exeitotoxicityinthe rat striatum[J]. Synapse, 2008(2): 325-36.
[9] Chen CX, Qincao L, Xu JT, et al. Role of PUMA in methamphetamine-induced neuronal apoptosis[J]. Toxicol Lett, 2016, 240(1): 149-60. DOI: 10.1016/j.toxlet.2015.10.020.
[10] Zhang X, Dong F, Mayer GE, et al. Selective inhibition of cyclooxygenase-2 exacerbates methamphetamine-induced dopamine depletion in the striatum in rats[J]. Neuroscience, 2007, 150(4): 950-8. DOI: 10.1016/j.neuroscience.2007.09.059.
[11] Lu J, Holmgren A. The thioredoxin superfamily in oxidative protein folding[J]. Antioxid Redox Signal, 2014, 21(3): 457-70. DOI: 10.1089/ars.2014.5849.
[12] Nakamura T, Lipton SA. Protein S-Nitrosylation as a therapeutic target for neurodegenerative diseases[J]. Trends Pharmacol Sci, 2016, 37(1): 73-84. DOI: 10.1016/j.tips.2015.10.002.
[13] Lee HJ, Lee SJ. Characterization of cytoplasmic alpha-synuclein aggregates. Fibril formation is tightly linked to the inclusionforming process in cells[J]. J Biol Chem, 2002, 277(50): 48976-83. DOI: 10.1074/jbc.M208192200.
[14] Kalia LV, Kalia SK, Mclean PJ, et al. alpha-Synuclein oligomers and clinical implications for parkinson disease[J]. Ann Neurol, 2013, 73(2): 155-69. DOI: 10.1002/ana.23746.
[15] 沈原, 赵永波, 刘功禄, 等. α-突触核蛋白的表达与氧化应激水平的相互影响[J]. 中国神经免疫学和神经病学杂志, 2011, 18(3): 174-7.
[16] 徐静涛, 张付, 杨幸怡, 等. 甲基苯丙胺所致的大鼠神经毒性损伤及nNOS抑制剂的保护作用[J]. 中国药理学通报, 2014, 30(8): 1101-6.
[17] Cadet JL. Roles of glutamate, nitric oxide, oxidative stress, and apoptosis in the neurotoxicity of methamphetamine[M]. Humana Press, 2002: 201-10.
[18] Wu XF, Wang AF, Chen L, et al. S-nitrosylating protein disulphide isomerase mediates alpha-synuclein aggregation caused by methamphetamine exposure in PC12 cells[J]. Toxicol Lett, 2014, 230(1): 19-27. DOI: 10.1016/j.toxlet.2014.07.026.
[19] Yu SB, Zhu L, Shen Q, et al. Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology[J]. Behav Neurol, 2015, 12(3): 1-11.
[20] Volkow ND, Chang L, Wang GJ, et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers[J]. Am J Psychiatry, 2001, 158(3): 377-82. DOI: 10.1176/appi.ajp.158.3.377.
[21] Callaghan RC, Cunningham JK, Sykes JA. Increased risk of Parkinson's disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs[J]. Drug Alcohol Depend, 2012, 120(1/3): 35-40.
[22] Imam SZ, Ali SF. Aging increases the susceptiblity to methamphetamine-induced dopaminergic neurotoxicity in rats:correlation with peroxynitrite production and hyperthermia[J]. J Neurochem, 2001, 78(5): 952-9. DOI: 10.1046/j.1471-4159.2001.00477.x.
[23] Cavaliere F, Cerf L, Dehay B, et al. In vitro ɑ-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains[J]. Neurobiol Dis, 2017, 103(7): 101-12.
[24] Li Y, Chung KK. Involvement of S-Nitrosylation in neurodegeneration[J]. Protein Reviews, 2011, 13(4): 79-95.
[25] Wen D, An ML, Gou HY, et al. Cholecystokinin-8 inhibits methamphetamine-induced neurotoxicity via an anti-oxidative stress pathway[J]. Neurotoxicology, 2016, 57(8): 31-8.
[26] Friend DM, Son JH, Keefe KA. Expression and activity of nitric oxide synthase isoforms in Methamphetamine-Induced striatal dopamine toxicity[J]. J Pharmacol Exp Ther, 2013, 344(2): 511-21. DOI: 10.1124/jpet.112.199745.
[27] 陈汉, 王慧君, 李学锋, 等. 甲基苯丙胺对大鼠脑组织中NO, SOD和MDA的影响[J]. 中国药物依赖性杂志, 2007, 16(2): 102-4.
[28] 吴小芳, 王爱枫, 邱平明. 甲基苯丙胺对PC12细胞中二硫键异构酶S亚硝基化的影响[J]. 南方医科大学学报, 2017, 37(1): 93-6.
[29] Li XE, Wang HJ, Qiu PM, et al. Proteomic profiling of proteins associated with methamphetamine-induced neurotoxicity in different regions of rat brain[J]. Neurochem Int, 2008, 52(1/2): 256-64.
[30] Zhang F, Chen L, Liu C, et al. Up-regulation of protein tyrosine nitration in methamphetamine-induced neurotoxicity through DDAH/ADMA/NOS pathway[J]. Neurochem Int, 2013, 62(8): 1055-64. DOI: 10.1016/j.neuint.2013.03.016.
[31] Song JW, Liu ZJ, Tan XH, et al. Involvement of DDAH/NOS pathway in methamphetamine-induced neurotoxicity in rat striatum[J]. 华西药学杂志, 2010, 25(6): 679-81.