文章快速检索     高级检索
  南方医科大学学报  2017, Vol. 37Issue (8): 1126-1130  DOI: 10.3969/j.issn.1673-4254.2017.08.21.
0

引用本文 [复制中英文]

彭萍, 马春玲, 万淑梅, 金文胜, 高妍, 黄天晴, 程琦, 叶长烂. 二甲双胍对胎儿生长受限小鼠追赶生长时期胰岛素抵抗的干预效果[J]. 南方医科大学学报, 2017, 37(8): 1126-1130. DOI: 10.3969/j.issn.1673-4254.2017.08.21.
PENG Ping, MA Chunling, WAN Shumei, JIN Wensheng, GAO Yan, HUANG Tianqing, CHENG Qi, YE Changlan. Effect of metformin on insulin resistance during catch-up growth in mice with fetal growth restriction[J]. Journal of Southern Medical University, 2017, 37(8): 1126-1130. DOI: 10.3969/j.issn.1673-4254.2017.08.21.

基金项目

广东省自然科学基金(S2012010008707)

通信作者

彭萍, 博士, 主任医师, E-mail: pengping1728@163.com

文章历史

收稿日期:2016-11-17
二甲双胍对胎儿生长受限小鼠追赶生长时期胰岛素抵抗的干预效果
彭萍, 马春玲, 万淑梅, 金文胜, 高妍, 黄天晴, 程琦, 叶长烂     
广州军区广州总医院妇产科, 广东 广州 510010
摘要: 目的 探讨二甲双胍干预胎儿生长受限(FGR)小鼠追赶生长时期胰岛素抵抗的有效性。方法 采用孕期低蛋白饮食法建立FGR小鼠模型。FGR组和正常对照组(NC)新生雌鼠自断乳后分别喂予标准饲料(SF)和高脂饲料(HF), 不同饲料喂养组又分为二甲双胍灌胃组(MF)和生理盐水灌胃组(NS), 即:NC+SF+NS组、NC+SF+MF组、NC+HF+NS组、NC+HF+MF组、FGR+SF+NS组、FGR+SF+MF组、FGR+HF+NS组、FGR+HF+MF组。于仔鼠8周龄开始每组取6只观察阴道开口时间及动情周期变化。第12周在动情间期每组取6只小鼠禁食12 h, 测体质量、身长, 计算体质量系数(PI), 采血取血清进行空腹血糖(FPG)、空腹胰岛素(Fins)、促卵泡生成素(FSH)、抗苗勒管激素(AMH)检测, 并计算胰岛素抵抗指数(HOMA-IR)。第12周始每组取6只小鼠, 与雄鼠2:1合笼交配, 了解雌鼠生殖能力。组间比较采用单因素方差分析, 组间差异采用Fisher精确概率检验, 以FGR、HF及MF三个因素为分析指标, 采用3×2析因实验分析, 确定有无交互作用, 以及交互作用的显著性水平。结果 (1)析因分析:FGR因素及HF因素对PI指数、Fins、HOMA-IR、阴道开口时间、AMH均有交互相加作用的显著性影响(P<0.05);MF因素干预HF因素相关的体质量、PI指数、FPG、Fins、HOMA-IR及动情周期开始时间有显著性意义(P<0.05);除身长、FSH外, MF因素干预FGR因素相关的其余观察指标均有显著性意义(P<0.05)。(2)组间比较:除体质量外, FGR因素对其余观察指标的影响差异均有统计学意义(均P<0.05);除FSH外, HF因素对其余观察指标的影响差异均有统计学意义(均P<0.05);除身长、FSH外, MF因素对其余观察指标的影响差异均有统计学意义(均P<0.05);另FGR+HF+NS组与NC+SF+NS组、FGR+SF+NS组与FGR +HF+NS组妊娠率的差异有统计学意义(P<0.05)。结论 FGR小鼠存在青春期延迟、稀发排卵及成年期胰岛素抵抗, 出生后高脂饮食促发FGR小鼠的追赶生长, 追赶生长时期的二甲双胍干预对其胰岛素抵抗、生殖内分泌紊乱的改善具有有效性
关键词: 胎儿生长受限    二甲双胍    胰岛素抵抗    高脂饮食    追赶生长    
Effect of metformin on insulin resistance during catch-up growth in mice with fetal growth restriction
PENG Ping, MA Chunling, WAN Shumei, JIN Wensheng, GAO Yan, HUANG Tianqing, CHENG Qi, YE Changlan     
Department of Obstetrics and Gynecology, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010, China
Abstract: Objective To study the efficacy of metformin intervention on insulin resistance during catch-up growth in mice with fetal growth restriction (FGR). Methods Mouse models of FGR were established by low protein diet feeding of the pregnant mice. Both the newborn female mice with FGR and normal control (NC) mice were randomized for feeding with a standard diet (SF) or a high-fat diet (HF) after weaning and treatment with gavage of either metformin or normal saline. The mice were examined for vaginal opening time and the estrous cycle at the age of 8 weeks. At the age of 12 weeks, 6 mice in anestrus from each group were fasted for 12 h for measurement of body weight, height, poundera index (PI), fasting blood glucose (FBG), fasting insulin (Fins), follicle stimulating hormone (FSH) and anti-Müllerian hormone (AMH), and the HOMA-IR wascalculated. The reproductive capacity of female mice was assessed by mixing them with male mice at the ratio of 2:1. The 3 × 2 factorial analysis was conducted to determine the interactions between FGR, high-fat feeding and metformin. Results Factorial analysis showed that FGR and high-fat feeding had significant effects on the PI index, Fins, HOMA-IR, vaginal opening time, and AMH (P < 0.05). Metformin significantly affected the factors related to high-fat feeding including weight, PI, FPG, Fins, HOMA-IR and estrous cycle (P < 0.05) and the factors related to FGR with the exception of height and FSH (P < 0.05). FGR significantly affected the factors tested except for body weight (P < 0.05); high-fat feeding affected all the factors but the FSH (P < 0.05); metformin affected all the factors but the height and FSH (P < 0.05). In the female mice treated with saline, the pregnancy rates differed significantly between FGR mice with high-fat feeding and control mice with standard feeding, and between FGR mice with standard feeding and high-fat feeding (P < 0.05). Conclusion FGR mice can present with delayed puberty with rare ovulation and adulthood insulin resistance, and high-fat feeding after birth can promote the catch-up growth of FGR mice. Metformin intervention is effective for improving insulin resistance and reproductive-endocrinedisorders in FGR mice during catch-up growth
Key words: fetal growth restriction    metformin    insulin resistance    high-fat diet    catch-up growth    

胎儿生长受限(FGR)是一种常见妊娠并发症,发病率国外报道为4.5%~14%,国内报道为3%~10% [1-2]。20世纪90年代,Barker在系列观察研究中证实FGR是一个导致成年后心血管及代谢疾病的主要危险因素后,提出“成人疾病的胎儿起源”假说,即著名的“Barker假说” [3-4],进而在此学说的基础上提出健康和疾病的发育起源学说[5]。迄今,已有的大量研究证实[6-12],FGR不但危害胎儿生存质量,还将引发成年后代谢性及内分泌疾病。FGR儿中约80%在出生后随着胎儿时期阻碍生长的不利因素的去除,出现超过相应年龄正常速度加速生长,即追赶生长现象,追赶生长虽然可能使体质量、身高达到正常范围,但其“代价”是促发胰岛素抵抗,增加成年期代谢性及内分泌疾病(如卵巢生殖内分泌功能异常)的患病风险。胰岛素抵抗是成年疾病胎儿起源的中心环节,其与基因组的表观遗传修饰密切相关[13-14]。基因组的表观遗传修饰是可逆的,易受生长环境因素的干扰而出现可遗传的改变[15-16],这为成人期疾病的早期防治提供了新的思路。

二甲双胍是胰岛素增敏剂,国外有学者[17]尝试在FGR儿出生后的青春期前(8~12岁)应用二甲双胍,取得一定改善效果。但超过80%的追赶生长速度高峰期发生在生后头6个月内,期间伴随体脂的急剧增加,成为促进胰岛素抵抗的最敏感时期[18-20],而对“追赶生长时期”促发胰岛素抵抗敏感阶段采用二甲双胍干预的有效性目前尚未见报道。因此,本研究采用孕期母鼠低蛋白饮食法建立FGR小鼠模型,并通过出生后高脂饮食建立追赶生长模型[21-22],同时在FGR小鼠“追赶生长时期”采用二甲双胍进行干预,探讨二甲双胍对改善FGR小鼠“追赶生长时期”胰岛素抵抗的有效性及对FGR小鼠成年后的糖代谢及生殖功能的远期影响。

1 材料和方法 1.1 实验动物及分组

健康的生育期KM雌性小鼠(8周龄,体质量30~35 g)12只,与同一品系雄性小鼠(8周龄,体质量35~40 g)4只,按3:1合笼交配过夜,次日晨8~9时进行阴道涂片,光学显微镜下观察,以发现精子作为妊娠第1日并给予低蛋白饮食法建立FGR小鼠模型,直至自然分娩。孕期低蛋白饮食小鼠所新生雌鼠,按出生体质量在正常组(NC)新生鼠平均体质量减去2倍标准差以下者为FGR新生鼠(正常组新生小鼠平均体质量为1.78±0.15 g),各组仔鼠满3周后断乳。断乳后FGR新生雌鼠和NC新生雌鼠各随机分为高脂饮食(HF)组及标准饲料(SF)组。HF组及SF再每组随机分为二甲双胍(MF)干预组及非MF干预组,共8组,每组6只,至实验结束(12周)。MF干预组自满3周断乳后开始采用1% MF溶液按每天100 mg/kg,分2次灌胃至满8周龄,非MF干预组则同期采用等量生理盐水(NS)灌胃。

1.2 饲料组成

本实验所需饲料由广东省医学实验动物中心提供。各饲料成分含量比即占总热量百分比见表 1

表 1 各组饲料的营养成分含量及总热能 Table 1 Composition and total energy of the diets
1.3 观察项目

(1)于仔鼠8周龄开始每组随机取6只进行阴道开口时间的动态观察;阴道开口者行阴道涂片进行动情周期观察,并连续涂片30 d计算动情周期个数。(2)于第12周龄的动情间期,每组随机取6只小鼠禁食12 h,测体质量、身长(鼻尖至肛门距离),计算体质量系数(PI),PI=体质量(g)×100/身长(cm)。从后眶周静脉采血2 mL,血样静置凝固后3000 r/min常温离心5 min后,留取血清。采用葡萄糖氧化酶法进行空腹血糖(FBG)检测,用人胰岛素放免试剂盒进行空腹胰岛素(Fins)检测,用ELISA试剂盒进行促卵泡生成素(FSH)、抗苗勒管激素(AMH)水平检测;以稳态模型评估的胰岛素抵抗指数(HOMA-IR),HOMA-IR=(FBG×Fins)/22.5,并取其自然对数后评价胰岛素抵抗。(3)第12周始每组取6只小鼠,与雄鼠2:1合笼交配,了解雌鼠生殖能力。每晨仔细检查阴栓以确定妊娠,连续合笼10 d后雌雄分开;观察至交配后的第21天。

1.4 统计学处理

采用SPSS19.0软件进行统计处理,全部计量资料以均数±标准差表示,组间比较采用单因素方差分析,组间差异采用Fisher精确概率检验,采用3×2析因实验分析,确定有无交互作用,以及交互作用的显著性水平,分析指标为FGR、HF及MF 3个因素,P<0.05认为差异有统计学意义。

2 结果 2.1 第12周各组小鼠体质量、身长、PI的比较(表 2
表 2 12周龄小鼠体质量、身长、PI测量参数 Table 2 Comparison of weight, height and PI index among 12-week-old mice with different treatments (Mean±SD, n=6)

其中HF和MF因素对体质量均有影响,3个因素间有交互作用(P<0.05),但FGR因素对体质量的影响无统计学意义(P>0.05);FGR和HF因素对身长均有影响,仅FGR与HF因素间有交互作用(P<0.05),但MF因素对身长的影响无统计学意义(P>0.05);3因素对PI均有影响,且3个因素间均有交互作用(P<0.05)。

2.2 第12周各组小鼠FBG、Fins、HOMA-IR比较(表 3
表 3 12周龄小鼠FBG、Fins、HOMA-IR比较 Table 3 Comparisons of FBG, Fins, and HOMA-IR among 12-week-old mice with different treatments (Mean±SD, n=6)

其中3个因素对FPG、Fins、HOMA-IR均有影响,并且对Fins、HOMA-IR,3因素间均有交互作用(P<0.05);但对FPG,仅FGR和MF、HF和MF两个因素有交互作用(P<0.05),但FGR和HF之间无交互作用(P>0.05)。

2.3 青春期发育及生殖能力观察(表 4
表 4 小鼠阴道开口时间、动情周期时间及动情周期个数、妊娠率情况 Table 4 Vaginal opening time, start time of estrus cycle, number of estrus cycle and pregnancy rate in 12-week-old mice with different treatments (Mean±SD, n=6)

其中3因素对阴道开口时间、动情周期开始时间以及动情周期个数均有影响(P<0.05);其中对阴道开口时间,FGR和MF、FGR和HF间有交互作用(P<0.05),HF和MF间无交互作用(P>0.05);对动情周期开始时间,FGR和MF、HF和MF间有交互作用(P<0.05),但FGR和HF间无交互作用(P>0.05);对动情周期个数,仅FGR和MF间有交互作用(P<0.05)。妊娠率:FGR+HF+NS组与NC+SF+NS组、FGR+SF+NS组与FGR+HF+NS组妊娠率的差异有统计学意义(P<0.05)外,其他各组差异无统计学意义。

2.4 第12周龄各组小鼠FSH、AMH值比较(表 5
表 5 12周龄小鼠FSH、AMH比较 Table 5 Comparisons of FSH and AMH among 12-week-old mice with different treatments (Mean±SD, n=6)

其中3个因素对AMH均有影响,并且FPG和MF、FGR和HF之间有相互作用(P<0.05),但HF和MF之间无交互作用(P>0.05);而对FSH,仅FGR因素对FSH有影响(P<0.05),3个因素之间均无交互作用(P>0.05)。

3 讨论 3.1 二甲双胍对FGR小鼠追赶生长的干预作用

目前评价追赶生长有体质量、身长、PI和头围4种指标,其中以体质量和身长为主,因此PI是一重要客观评估指标[23]。二甲双胍是临床上广泛应用的双胍类降糖药,能增加胰岛素的敏感性,改善胰岛素抵抗,国外有学者[17]尝试在FGR儿出生后的青春期前(8~12岁)应用二甲双胍,结果能改善青春期的身高、体脂含量。本实验中虽然提示12周龄的FGR组小鼠其平均体质量、PI指数大于对照组,但析因实验分析结果显示:单纯FGR因素对成年期体质量的影响尚不能明确,但哺乳期后的HF因素放大了FGR对胰岛素敏感性下降的作用,加剧了胰岛素抵抗的程度,导致出生后的追赶生长,使12周龄的FGR小鼠出现了明显的肥胖趋势,而追赶生长时期的FGR小鼠经二甲双胍的早期干预后,其体质量、PI指数明显低于FGR未干预组,提示对FGR在追赶生长时期的饮食管理和药物干预的必要性和有效性。

3.2 二甲双胍对追赶生长FGR小鼠糖代谢的干预作用

低蛋白饮食抑制母鼠胰腺细胞功能的发育,导致胰岛素的分泌减少,新生的仔鼠出现胰岛细胞异常增殖,β细胞增殖减少,胰岛细胞大小异常,胰腺胰岛素含量减少,导致低出生体质量和成年期的代谢综合征[24-25]。本实验中12周龄的FGR组小鼠出现胰岛素抵抗,其FPG、Fins、HOMA-IR明显高于对照组;析因实验分析结果显示:相比FPG,3因素(FGR、HF、MF)对Fins、HOMA-IR的交互作用更有显著性意义,提示高脂饮食加剧了胰岛素抵抗的程度,加重FGR仔鼠胰岛功能的损害,二甲双胍提高机体对胰岛素敏感性,减轻胰岛素抵抗,改善胰岛素分泌的能力,明显降低了FGR追赶生长小鼠Fins、HOMA-IR水平,减少成年期代谢综合征的发生。

3.3 二甲双胍对追赶生长FGR小鼠卵巢功能的干预作用

研究表明[26-27],胰岛素在生殖轴调控中同样发挥重要作用:一方面通过直接或间接作用促进雄激素的产生或者利用度的增高,加速卵泡募集,从而使储备池中的初始卵泡数量减少,甚至发生卵巢早衰;另一方面通过协同FSH作用于颗粒细胞使卵泡发育障碍。HF可能通过加重胰岛素抵抗的途径加重FGR小鼠的排卵障碍和生殖能力的下降。国外学者[17]尝试在FGR儿出生后的青春期前(8~12岁)应用二甲双胍,结果能降低性早熟、多囊卵巢综合征的发生。本实验中,FGR组与FGR+HF组的FSH明显高于对照组,而比FSH更敏感的卵巢储备功能指标----AMH低于对照组,阴道开口时间、动情周期开始时间明显晚于对照组,动情周期个数明显少于对照组,FGR+HF组且有稀发排卵的现象;析因实验分析结果显示:追赶生长时期的HF因素对所观察的生殖内分泌指标均有显著不良影响,对阴道开口时间及AMH,HF与FGR均产生交互相加效应;通过二甲双胍的早期干预,FGR小鼠的卵巢功能指标(AMH及阴道开口时间、动情周期开始时间及动情周期)得到改善,但尚不能明确对FSH的交互作用,这也可能提示AMH较FSH对评估卵巢储备功能更为敏感。

综上所述,FGR小鼠在成年后易出现胰岛素抵抗现象,追赶生长时期的HF加剧了胰岛素抵抗损害的效应和成年期代谢及生殖内分泌疾病的发生。追赶生长时期的二甲双胍干预可减少FGR小鼠性成熟期肥胖、内分泌及生殖功能紊乱的发生,为临床开展FGR追赶生长时期胰岛素抵抗的早期干预提供了一定科学依据和实践指导,但尚需对二甲双胍干预FGR小鼠追赶生长时期的效果进行更远期的观察。

参考文献
[1] Salam RA, Das JK, Bhutta ZA. Impact of intrauterine growth restriction on long-term health[J]. Curr Opin Clin Nutr Metab Care, 2014, 17(3): 249-54. DOI: 10.1097/MCO.0000000000000051.
[2] 祝捷, 马军, 徐萍, 等. 小于胎龄儿健康状况及其影响因素的流行病学调查[J]. 中国儿童保健杂志, 2012, 20(3): 228-30.
[3] Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales[J]. Lancet, 1986, 1(8489): 1077-81.
[4] Barker DJ. The fetal and infant origins of adult disease[J]. BMJ, 1990, 301(6761): 1111. DOI: 10.1136/bmj.301.6761.1111.
[5] Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease[J]. N Engl J Med, 2008, 359(1): 61-73. DOI: 10.1056/NEJMra0708473.
[6] Szostak-Wegierek D. Intrauterine nutrition: long-term Consequences for vascular health[J]. Int J Womens Health, 2014, 11(6): 647-56.
[7] Makikallio K, Shah J, Slorach C, et al. Fetal growth restriction and cardiovascular outcome in early human infancy: a prospective longitudinal study[J]. Heart Vessels, 2016, 31(9): 1504-13. DOI: 10.1007/s00380-015-0742-5.
[8] Van Dommelen P, Van der pal SM, bennebroek GJ, et al. The effect of early catch-up growth on health and well-being in young adults[J]. Ann Nutr metab, 2014, 65(2-3): 220-6. DOI: 10.1159/000364884.
[9] Alexeev EE, L?nnerdal B, Griffin IJ. Effects of postnatal growth restriction and subsequent catch-up growth on neurodevelopment and glucose homeostasis in rats[J]. BMC Physiol, 2015, 15(5): 3.
[10] Kelishadi R, Haghdoost AA, Jamshidi F, et al. Low birthweight or rapid catch-up growth: which is more associated with cardiovascular disease and its risk factors in later life? A systematic review and cryptanalysis[J]. Paediatr Int Child Health, 2015, 35(2): 110-23. DOI: 10.1179/2046905514Y.0000000136.
[11] Okada T, Takahashi S, Nagano N, et al. Early postnatal alteration of body composition in preterm and small-for-gestational-age infants: implications of catch-up fat[J]. Pediatr Res, 2015, 77(1, 2): 136-42.
[12] 彭萍, 马春玲, 叶长烂, 等. 胎儿生长受限与成年后卵巢储备功能的关系[J]. 南方医科大学学报, 2014, 34(8): 1217-9.
[13] Zeisel SH. Epigenetic mechanisms for nutrition determinants of later health outeomes[J]. Am J Clin Nutr, 2009, 89(5): 1488S-93S. DOI: 10.3945/ajcn.2009.27113B.
[14] Saffery R. Epigenetic change as the major mediator of fetal programming in humans: are we there yet[J]. Ann Nutr Metab, 2014, 64(3/4): 203-7.
[15] Symonds ME, Sebert S, Budge H. The obesity epidemic:from the environment to epigenetics not simply a response to dietary manipulation in a thermoneutral environment[J]. Front Genet, 2011, 31(2): 24.
[16] Barker DJ. Inutero programming of chronic disease[J]. Cli Sci, 1998, 95(2): 115-28. DOI: 10.1042/cs0950115.
[17] Ibanez L, Lopez-Bermejo A, Diaz M, et al. Early metformin therapy to delay menarche and augment height in girls with precocious pubarche[J]. Fertil Steril, 2011, 95(2): 727-30. DOI: 10.1016/j.fertnstert.2010.08.052.
[18] Leunissen RW, Kerkhof GF, Stijnen TA. Timing and tempo of First-Year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood[J]. JAMA, 2009, 301(21): 2234-42. DOI: 10.1001/jama.2009.761.
[19] Perucchin PP, Traggiai C, Calevo MG, et al. Auxological and metabolic study in small for gestational age children during 2 years follow-up[J]. J Matern Fetal Neonatal Med, 2011, 24(2): 381-7. DOI: 10.3109/14767058.2010.497570.
[20] 张金, 张慧, 邢燕, 等. 宫内发育迟缓大鼠早期追赶生长与胰岛素敏感性变化的关系[J]. 中国儿童保健杂志, 2015, 23(6): 595-8. DOI: 10.11852/zgetbjzz2015-23-06-11.
[21] Claycombe KJ, Uthus EO, Roemmich JN, et al. Prenatal LowProtein and postnatal high-fat diets induce rapid adipose tissue growth by inducing Igf2 expression in sprague dawley rat offspring[J]. J Nutr, 2013, 143(10): 1533-9. DOI: 10.3945/jn.113.178038.
[22] Sellayah D, Dib L, Anthony FW, et al. Effect of maternal protein restriction during pregnancy and postweaning high-fat feeding on diet-induced thermogenesis in adult mouse offspring[J]. Eur J Nutr, 2014, 53(7): 1523-31. DOI: 10.1007/s00394-014-0657-4.
[23] Deng HZ, Li YH, Su Z, et al. Association between height and weight catch-up growth with insulin resistance in pre-pubertal Chinese children born small for gestational age at two different ages[J]. Eur J Pediatr, 2011, 170(1): 75-80. DOI: 10.1007/s00431-010-1274-8.
[24] Berends LM, Fernandez-Twinn DS, Martin-Gronert M, et al. Catch-up growth following intra-uterine growth-restriction programmes an insulin-resistant phenotype in adipose tissue[J]. Int J Obes (Lond), 2013, 37(8): 1051-7. DOI: 10.1038/ijo.2012.196.
[25] Xita N, Tsatsoulis A. Fetal origins of the metabolic syndrome[J]. Ann N Y Acad Sci, 2010, 1205(9): 148-55.
[26] Sen A, Prizant H, Light A, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression[J]. Proc Natl Acad Sci USA, 2014, 111(8): 3008-13. DOI: 10.1073/pnas.1318978111.
[27] Brown LD, Rozance PJ, Bruce JL, et al. Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction[J]. Am J Physiol Regul Integr Comp Physiol, 2015, 309(8): R920-8. DOI: 10.1152/ajpregu.00197.2015.