文章快速检索     高级检索
  南方医科大学学报  2017, Vol. 37Issue (4): 567-569  DOI: 10.3969/j.issn.1673-4254.2017.04.26.
0

引用本文 [复制中英文]

林芳波, 侯德仁, 唐秋萍. 抑郁症的药物治疗进展及艾氯胺酮的应用前景[J]. 南方医科大学学报, 2017, 37(4): 567-569. DOI: 10.3969/j.issn.1673-4254.2017.04.26.
LIN Fangbo, HOU Deren, TANG Qiuping. Research progress of depression and the application of esketamine[J]. Journal of Southern Medical University, 2017, 37(4): 567-569. DOI: 10.3969/j.issn.1673-4254.2017.04.26.

基金项目

湖南省科技厅重点研发计划(2016JC2052);中南大学湘雅三医院新湘雅人才工程“至善领跑计划”(20150305)

作者简介

林芳波,硕士研究生,E-mail: 1183648014@qq.com

通信作者

侯德仁,博士,硕士研究生导师,主任医师,E-mail: hou0718@126.com

文章历史

收稿日期:2017-03-09
抑郁症的药物治疗进展及艾氯胺酮的应用前景
林芳波1, 侯德仁1, 唐秋萍2     
1. 中南大学湘雅三医院神经内科,湖南 长沙 410013;
2. 中南大学湘雅三医院临床心理科,湖南 长沙 410013
摘要: 抑郁症是一种病因和发病机制不明的精神障碍。抑郁症的发生可能与神经递质分泌减少、神经细胞的凋亡、炎症反应、肠道菌群失调等多种因素有关。目前临床常用的抗抑郁药SSRIs、SNRIs、NaSSA、SARIs类药物虽有一定的效果,但难以缓解抑郁患者所有的症状。近年来研究发现艾氯胺酮主要通过N-甲基-D天冬氨酸受体发挥强大而持久的抗抑郁作用。本文就抑郁症的发病机制、药物治疗研究进展和艾氯胺酮治疗抑郁症的机制、疗效及其应用前景进行综述。目前艾氯胺酮抗抑郁的作用机制未明确,临床尚未普遍应用,但其能迅速缓解抑郁症的症状等优点一定会有广泛的应用前景。
关键词: 抑郁症    发病机制    药物治疗    艾氯胺酮    
Research progress of depression and the application of esketamine
LIN Fangbo1, HOU Deren1, TANG Qiuping2     
1. Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China;
2. Department of Clinical Psychology, Third Xiangya Hospital, Central South University, Changsha 410013, China
Abstract: The pathogenesis and etiology of still remain unknown. Current evidence suggests that the occurrence of depression may be related to a reduced secretion of neurotransmitters, neuronal apoptosis, inflammation, intestinal flora and other factors. Although the commonly used antidepressants such as SSRIs, SNRIs, NaSSA, and SARIs produce some therapeutic effects, they fail to relieve the full spectrum of the symptoms of depression. In recent years, esketamine was found to produce a potent and a long-lasting antidepressant effect by acting on the NMDA receptors. Herein the authors review the progress in the study of the pathogenesis and drug therapies of depression, the efficacy of esketamine treatment and the underlying mechanism, and the prospect of esketamine treatment. Currently the mechanism of the antidepressant effect of esketamine remains indeterminate and its clinical application is limited, but its effect in rapidly alleviating the symptoms of depression suggests its bright prospect for clinical applications.
Key words: depression    pathogenesis    drug treatment    esketamine    
1 抑郁症的发病机制

抑郁症是一种与自杀倾向相关的常见精神障碍,其病因尚未十分明确,但目前倾向性认为生物、心理与社会环境诸多方面因素参与了抑郁症的发病过程,强调遗传与环境或应激因素之间的交互作用以及这种交互作用出现的时点在抑郁症发生中的作用。

抑郁症的发病机制不清,现有研究认为可能与神经递质分泌减少、神经细胞的凋亡、炎症反应、肠道菌群失调等多种因素有关。单胺神经递质如去甲肾上腺素、5-羟色胺和多巴胺等功能低下与抑郁症的抑郁心境、焦虑不安、运动抑制、不能应对刺激、食欲减退、睡眠障碍、昼夜节律紊乱及内分泌功能失调等症状有关[1-3]。躯体和心理的应激会抑制海马齿状回颗粒细胞的形成,重复的应激压力会造成海马兴奋毒性损伤,从而减少海马齿状回神经生成[4-5]。母爱被剥夺的子代大鼠脑皮层和一些白质区域神经元的凋亡明显增加、细胞形态结构异常[6]。抑郁症患者凋亡相关基因Bcl-xl表达水平显著增加[7]。以上结果均表明神经元生成减少、细胞凋亡增加可能在抑郁症的发生中起着重要的作用。抑郁症患者外周血和脑脊液中相关炎性细胞因子如急性期蛋白、趋化因子、黏附分子浓度、前列腺素等表达升高,抗抑郁药物可通过抑制炎症相关因子IL-1、IL-6和TNF-α的释放而达到抗抑郁的作用,说明炎症反应参与了抑郁症的发生[8-9]。益生菌和瑞士乳酸菌可通过恢复皮质醇水平、降低炎症因子、调节血清素和中枢神经系统递质等多重机制缓解抑郁症状[10-11]。神经胃肠病学研究已经揭示了在胃肠道和中枢神经系统之间的广泛和直接的生化信号,称为“肠-脑轴”。该通信网络是由自主神经系统、肠神经系统、神经内分泌系统和免疫系统组成的,这些研究进展已经将精神疾病如重度抑郁与胃肠微生物组的变化联系起来[12-15],使其成为新型抗抑郁治疗的潜在靶标。目前较为认可的作用机制包括两方面:一是益生菌可以通过改善胃肠道内衬的完整性,降低内毒素渗漏到血液中的能力,从而减轻全身炎症反应,这种炎症反应的减少可通过改善下丘脑-垂体-肾上腺轴的调节和神经递质活性来达到对中枢神经系统的治疗作用;二是胃肠道中的益生菌通过增加游离色氨酸的产生,可以增加5-羟色胺的利用度,改善与重度抑郁相关的中枢神经系统症状,而增加的5-羟色胺可以促进下丘脑-垂体-肾上腺轴的调节并减少由神经递质的消耗引起的抑郁症状[16]

2 抑郁症的药物治疗现状

目前临床治疗抑郁症的主要手段仍然是传统的抗抑郁药。常用的抗抑郁药如选择性5-羟色胺再摄取抑制剂SSRIs、5-羟色胺和去甲肾上腺素能再摄取抑制剂SNRIs、去甲肾上腺素能及特异性5-羟色胺能抗抑郁药NaSSA、5-羟色胺受体拮抗药及5-羟色胺再摄取抑制剂SARIs等主要通过调节突触间隙单胺类神经递质(如5-羟色胺、去甲肾上腺素、多巴胺等)的浓度来发挥抗抑郁作用。但这些药物都存在临床治愈率低、残留症状突出、复燃率和复发率高、功能损害突出等问题。最初的抗抑郁剂治疗仅对约55%的抑郁症患者有效,绝大多数抗抑郁剂单药治疗,只有30%的患者达到临床治愈。以往SSRIs治疗抑郁症的随机临床试验显示:SSRIs治疗1个月后躯体症状的改善不明显,仍有疲乏、睡眠问题及肢体疼痛的困扰,抑郁发作次数越多,残留症状越多,再次复发的机会越大,抑郁症治疗结局越差[17-19]。虽然单胺能神经转导途径药物使抑郁的治疗取得了长足的进步,但其抗抑郁起效时间较长、可靠性不高、易于复发等缺点使研究者不断尝试突破单胺能递质的局限从而探求新的抗抑郁策略,而谷氨酸盐系统就是抑郁症治疗中非单胺作用靶标之一。

3 艾氯胺酮的抗抑郁作用及其应用前景

艾氯胺酮是氯胺酮的旋光异构体,又名右氯胺酮,氯胺酮是由左氯胺酮[R(-)-ketamine]和右氯胺酮[S(+)-ketamine]等量混合而成的消旋混合物,1970年作为分离麻醉剂(对任何疼痛没有感觉,但保持意识清醒)用于临床。氯胺酮的作用位点包括N-甲基-D天冬氨酸(NMDA)受体、阿片类受体、单胺类受体、类胆碱能受体、钠离子通道、钙离子通道等在内的多种受体,而艾氯胺酮作为氯胺酮的异构体对NMDA受体亲和力更高,可能会发挥更强的抗抑郁作用。2015年Hassamal等[20]首次报道了艾氯胺酮长期应用于难治性抑郁患者的疗效,研究表明难治性抑郁患者在每周两次静脉注射艾氯胺酮(0.5 mg/kg),使用满6周后,抑郁症状得到明显缓解,疗效持续了18个月,并且未见到明显的副作用。目前氯胺酮的抗抑郁作用机理尚不明确,有研究认为氯胺酮可通过增强突触的可塑性和增加突触形成来发挥作用[21]。研究表明抑郁症患者的边缘脑区域,例如前额叶皮质和海马中的神经元有明显的萎缩,主要表现在神经元棘突以及长树突数量和密度的减少,Li等[22]研究发现氯胺酮腹膜内给药可快速诱导前额叶皮质中神经元棘突及树突的数量,24 h后可见大量的成熟的棘突形成,这表明氯胺酮可能通过激活mTOR信号途径增强了棘突的稳定性及功能。mTOR是一个丝氨酸/苏氨酸激酶,功能是调节蛋白质翻译的起始[23]。因此提示mTOR途径可能是速效抗抑郁药作用的靶点。这一机制始于氯胺酮阻断NMDA受体,这抑制了eEF2激酶的激活,其逐渐导致eEF2磷酸化减少以及脑源性神经营养因子的表达下调。脑源性神经营养因子的表达激活了TrkB信号途径其导致细胞外信号传导相关激酶ERK和激酶B的去磷酸化和激活,以及抑制糖原合酶激酶3的活性。这一系列的改变激活了mTOR途径,其反过来增加突触蛋白的表达和棘突的密度的增加从而使突触的功能增强[22],从而达到快速改善抑郁症患者临床症状的效果。有学者认为艾氯胺酮的抗抑郁作用与海马齿状回相关[24],研究发现艾氯胺酮可以促进小鼠海马齿状回神经元细胞的成熟,单次注射艾氯胺酮数小时后,发现有利于海马齿状回新生神经元细胞的功能成熟和细胞的增殖,并且这一药效持续有4周之久,这被认为与抑郁症状得到迅速缓解相关。还有学者认为抑郁症与海马的神经血管可塑性相关[25],在用艾氯胺酮处理的抑郁模型鼠后,发现其海马的血管及突触得到明显的生长和成熟,这恰恰又是突触可塑性和神经元活动的重要支持点,这表明艾氯胺酮是通过增强海马的神经血管可塑性起到抗抑郁作用。另有研究说明抑郁的发生与神经胶质细胞密切相关,神经胶质细胞在修复大脑结构发挥着积极作用,一些临床和临床前期研究发现神经胶质细胞结构和功能的异常是抑郁症的病理生理基础[26]。Ardalan等[27]研究证明了星形胶质细胞的萎缩是抑郁发生的病理生理学机制这一假说,并且发现艾氯胺酮可能是通过对星形胶质细胞的结构和功能修复从而迅速产生抗抑郁作用。虽然,目前艾氯胺酮抗抑郁的作用机制不是十分清楚,临床尚未普遍应用,但其能迅速缓解抑郁症的症状等优点一定会有广泛的应用前景。

参考文献
[1] Hamon M, Blier P. Monoamine neurocircuitry in depression and strategies for new treatments[J]. Prog Neuropsych Biol Psych, 2013, 45 (7): 54-63.
[2] Goda R, Otsuka T, Iwamoto A, et al. Serotonin levels in the dorsal raphe nuclei of both chipmunks and mice are enhanced by long photoperiod, but brain dopamine level response to photoperiod is species-specific[J]. Neurosci Lett, 2015, 593 (10): 95-100.
[3] Rominger A, Cumming P, Brendel M, et al. Altered serotonin and dopamine transporter availabilities in brain of depressed patients upon treatment with escitalopram: A[J]. Eur Neuropsychopharmacol, 2015, 25 (6): 873-81. DOI: 10.1016/j.euroneuro.2014.12.010.
[4] Dong Z, Hu Z, Zhu H, et al. Tris-(2, 3-dibromopropyl) isocyanurate induces depression-like behaviors and neurotoxicity by oxidative damage and cell apoptosis in vitro and in vivo[J]. J Toxicol Sci, 2015, 40 (6): 701-9. DOI: 10.2131/jts.40.701.
[5] Huang X, Mao YS, Li C, et al. Venlafaxine inhibits apoptosis of hippocampal neurons by up-regulating brain-derived neurotrophic factor in a rat depression model[J]. Pharmazie, 2014, 7 (8): 4577-86.
[6] Rao JS, Kellom M, Kim HW, et al. Neuroinflammation and synaptic loss[J]. Neurochem Res, 2012, 37 (5): 903-10. DOI: 10.1007/s11064-012-0708-2.
[7] Dygalo NN, Kalinina TS, Bulygina VV, et al. Increased expression of the anti-apoptotic protein Bcl-xL in the brain is associated with resilience to stress-induced depression-like behavior[J]. Cell Mol Neurobiol, 2012, 32 (5): 767-76. DOI: 10.1007/s10571-011-9794-y.
[8] Berk M, Williams LJ, Jacka FN, et al. So depression is an inflammatory disease, but where does the inflammation come from?[J]. BMC Med, 2013, 11 (9): 200-4.
[9] Elmore MR, Lee RJ, West BL, et al. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation[J]. PLoS One, 2015, 10 (4): e0122912-6. DOI: 10.1371/journal.pone.0122912.
[10] Bravo JA, Forsythe P, Chew MV, et al. Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proc Natl Acad Sci USA, 2011, 108 (38): 16050-5. DOI: 10.1073/pnas.1102999108.
[11] Gilbert K, Arseneault-Bréard J, Flores Monaco F, et al. Attenuation of post-myocardial infarction depression in rats by n-3 fatty acids or probiotics starting after the onset of reperfusion[J]. Br J Nutr, 2013, 109 (1): 50-6. DOI: 10.1017/S0007114512003807.
[12] Foster J, Neufeld KA. Gut-brain axis: How the microbiome influences anxiety and depression[J]. Trends Neurosci, 2014, 17 (1): 27-31.
[13] Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun, 2015, 48 (2): 186-94.
[14] Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression[J]. Neurogastroenterol Motil, 2014, 26 (8): 1155-62. DOI: 10.1111/nmo.2014.26.issue-8.
[15] Kelly JR, Borre Y, O'Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res, 2016, 82 (11): 109-18.
[16] Wallace CJ, Milev R. The effects of probiotics on depressive symptoms in humans: a systematic review[J]. Ann Gen Psychiatry, 2017, 16 (2): 14-9.
[17] Greco T, Eckert G, Kroenke K. The outcome of physical symptoms with treatment of depression[J]. J Gen Intern Med, 2004, 19 (8): 813-8. DOI: 10.1111/j.1525-1497.2004.30531.x.
[18] Conradi HJ, Ornlel J, de Jonge P. Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study[J]. Psychol Med, 2011, 41 (6): 1165-74. DOI: 10.1017/S0033291710001911.
[19] Nierenberg AA, Husain MM, Trivedi MH, et al. Residual symptoms after remission of major depressive disorder with citalopram and risk of relapse: a STAR*D report[J]. Psychol Med, 2010, 40 (1): 41-50. DOI: 10.1017/S0033291709006011.
[20] Hassamal S, Spivey M, Pandurangi AK. Augmentation therapy with serial intravenous ketamine over 18 months in a patient with treatment resistant depression[J]. Clin Neuropharmacol, 2015, 38 (5): 212-6. DOI: 10.1097/WNF.0000000000000104.
[21] Iadarola ND, Niciu MJ, Richards EM, et al. Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review[J]. Ther Adv Chronic Dis, 2015, 6 (3): 97-114. DOI: 10.1177/2040622315579059.
[22] Li N, Lee B, Liu RJ, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists[J]. Science, 2010, 329 (59): 959-64.
[23] Naughton M, Clarke G, O'leary OF, et al. A review of ketamine in affective disorders: Current evidence of clinical efficacy, limitations of use and pre-clinical evidence on proposed mechanisms of action[J]. J Affect Disord, 2014, 156 (12): 24-35.
[24] Soumier A, Carter RM, Schoenfeld TJ, et al. New hippocampal neurons mature rapidly in response to ketamine but are not required for its acute antidepressant effects on neophagia in rats[J]. Eneuro, 2016, 3 (2): 29-33.
[25] Ardalan M, Wegener G, Rafati AH, et al. S-Ketamine rapidly reverses synaptic and vascular deficits of hippocampus in genetic animal model of depression[J]. Int J Neuropsychopharmacol, 2016, 35 (12): 6-8.
[26] Liu Q, Li B, Zhu HY, et al. Glia atrophy in the hippocampus of chronic unpredictable stress-induced depression model rats is reversed by electroacupuncture treatment[J]. J Affect Disord, 2011, 128 (3): 309-13. DOI: 10.1016/j.jad.2010.07.007.
[27] Ardalan M, Rafati AH, Nyengaard JR, et al. Rapid antidepressant effect of ketamine correlates with astroglial plasticity in the hippocampus[J]. Br J Pharmacol, 2017, 174 (6): 483-92. DOI: 10.1111/bph.v174.6.