哮喘是一种常见的慢性呼吸道疾病,在不同国家中占的比例从1%~18%不等[1] 。典型哮喘表现为反复发作的喘息、胸闷或咳嗽症状,常合并有可逆性气流受限、气道高反应和气道重塑[2] 。咳嗽变异性哮喘(CVA)患者以咳嗽为单一临床症状,存在气道高反应性和可逆的气流受限,抗哮喘治疗后有效。慢性气道炎症是哮喘的本质,在其发展过程中影响整个呼吸道,涉及到中央大气道及周围小气道,有研究发现小气道病理与大气道不同,小气道炎症细胞数量明显高于大气道和肺泡组织[3] 。研究发现小气道功能与哮喘的气道反应性、控制水平和严重程度相关[4] 。甚至有研究发现哮喘患者出现小气道功能障碍,而常规肺功能检查并未能反映出来[5] 。小气道因其特殊的生理结构,导致黏膜易损伤,且其管腔纤薄,易因分泌物或渗出而阻塞,炎症易波及气道全层及周围组织。小气道检查方法较多,但尚未达成共识。目前最常用于小气道研究的流速测量是最大呼气中期流速(MMEF)和50%肺活量时最大呼气流速(MEF50)、25%肺活量时最大呼气流速(MEF25),最常用阻力测量的是脉冲振荡技术[6] 。CVA与典型哮喘发病机制相似[7] ,都存在气道高反应性以及可逆的气流受限。国外学者曾对典型哮喘和CVA患者行Astograph法乙酰甲胆碱激发试验,两组患者基础测定阻力无差异,但典型哮喘气道敏感性和反应性较CVA高[8] 。2011年国内学者[9] 对学龄前儿童典型哮喘和CVA小气道功能进行对比,发现CVA患者气道阻力较急性发作期典型哮喘患者低,但与非急性期典型哮喘患者无差异。目前关于成人CVA、典型哮喘小气道功能的对比仍未见报道。本研究拟对比典型哮喘与CVA临床资料及小气道功能指标,从而为延缓疾病进展,及时控制病情提供依据。
1 资料和方法 1.1 对象纳入2016 年4 月~2016 年9 月南方医科大学珠江医院门诊哮喘患者43例,健康对照组27例。入选标准:(1)哮喘诊断符合中华医学会呼吸病学分会哮喘学组制定的支气管哮喘防治指南中的诊断标准[10] ,初次诊断为哮喘患者;(2)年龄18~75 岁;(3)胸片检查未见异常。排除标准:(1)除哮喘外合并其他呼吸系统疾病;(2)有其他系统的严重疾病(如心肌梗死、恶性肿瘤等);(3)在测试前服用过影响检查药物者;(4)妊娠或哺乳期妇女。本研究方案已获得本单位伦理委员会批准(伦理号:2016-HXNK-003)。
1.2 方法所有患者进行一般资料采集、ACT、ACQ-7、FeNO、脉冲震荡气道阻力检查、肺通气功能检查,根据肺功能情况选择下一步检查,1秒率≥70%选择行激发试验,如1秒率<70%则行舒张试验,激发/舒张试验检查后再次行气道阻力检查。
1.2.1 呼出气一氧化氮测定FeNO测定应在肺功能检查、脉冲震荡检查等其他检查前完成。采用NIOXMINO(Aerocrine, Sweden)便携仪,严格按照美国胸科协会关于FeNO测定质控标准[11] 操作。
1.2.2 肺通气功能检查采用Master Screen IOS(Jaeger Co, Germany)肺功能仪,严格按照美国胸科协会及欧洲呼吸协会联合指南[12] 操作。
1.2.3 脉冲震荡检查采用Master Screen IOS(JaegerCo, Germany)脉冲震荡气道阻力检查系统,严格按照脉冲震荡标准化指南[13] 操作。测定指标包括:响应频率(Fres)、呼吸总阻抗实测值/预计值(Zrs/pred)、总气道阻力实测值/预计值(R5/pred)、中心气道阻力实测值/预计值(R20/pred)、外周气道阻力(R5~R20)、外周弹性阻力(X5)。
1.2.4 乙酰甲胆碱激发试验(BPT)采用Master ScreenIOS(Jaeger Co, Germany)肺功能仪经APS 雾化器给药。按照支气管激发试验指南[14] 中的定量雾化吸入乙酰甲胆碱程序要求操作。激发试验阳性判定:以引起第1秒用力呼气容积较预计值下降超过20%时吸入乙酰甲胆碱累积剂量为激发阈值小于2.504 mg者为激发试验阳性。气道反应性使用等级资料记录分析:吸入生理盐水0.072 mg激发试验阳性记为1级,吸入乙酰甲胆碱累积剂量0.078、0.313、1.250、2.504 mg激发试验阳性分别记为2级、3级、4级、5级,乙酰甲胆碱累积剂量2.504 mg激发试验阴性记为6级;即气道反应性等级越高,气道反应性越低。
1.2.5 沙丁胺醇舒张试验(BDT)按照支气管舒张试验指南[15] 操作,支气管舒张药物为400 μg沙丁胺醇气雾剂。
1.3 统计学分析正态分布数据均数±标准差描述,非正态分布数据以中位数,四分位间距描述;计数资料采用χ2检验,计量资料采用t检验或单因素方差分析;等级资料或经对数转换后仍非正态分布数据采用Kruskal-Wallis H 或Mann-Whitney U检验比较组间差异;正态分布数据采用Pearson相关、不满足正态分布数据采用Spearman相关确定数据相关性,P<0.05为差异有统计学意义。
2 结果 2.1 一般资料共纳入哮喘患者43例,年龄41.26±15.34岁,其中男性22例,女性21例。各组在身高、体质量、年龄、吸烟史、过敏史与家族史差异无统计学意义(表 1,2);在过敏性鼻炎占比,组间差异有统计学意义(P=0.001)。TABDT(+)患者ACT评分较CVA患者低(P<0.05),但TABPT(+)与CVA、TA BPT(+)与TA BDT(+)相比无统计学差异(均P>0.05)。ACQ-7,TA BDT(+)最高,TA BPT(+)次之,CVA最低(F=11.496,P=0.000)。
![]() |
表 1 典型哮喘与咳嗽变异型患者吸烟史、过敏性鼻炎、过敏史和家族史差异分析 Table 1 History of smoking, allergies, and family history of patients with typical asthma (TA) and cough-variant asthma (CVA) |
![]() |
表 2 典型哮喘与咳嗽变异型哮喘患者临床特征比较 Table 2 Clinical features and pulmonary function test results of patients with TAand CVA |
典型哮喘患者FeNO明显高于对照组(F=3.808,P=0.014),但典型哮喘与CVA、CVA与对照组FeNO值两两比较差异均无统计学意义(均P>0.05)。
2.3 肺通气功能TA BDT(+)患者肺功能指标(用力肺活量、第1秒用力呼气容积、1 s率、呼气流量峰值)低于TA BPT(+)、CVA、对照组(均P<0.05)。TA BDT(+)、TA BPT(+)、CVA患者最大呼气中期流速、75%、50%、25%肺活量时最大呼气流速均较对照组低,两两比较,TA BDP(+)较TA BPT(+)、CVA患者低,差异均有统计学意义(均P<0.01);TA BPT(+)较CVA低,但差异无统计学意义(P>0.05)。
2.4 脉冲震荡指标TA BDT(+)脉冲震荡气道阻力指标: 响应频率(Fres)、呼吸总阻抗实测值/预计值(Zrs/pred)、总气道阻力实测值/预计值(R5/pred)、中心气道阻力实测值/预计值(R20/pred)、外周气道阻力(R5~R20)、外周弹性阻力(X5)明显较其余3组患者高(均P<0.05);但其余3组两两比较,差异无统计学意义(表 2)。
2.5 气道反应性TA BPT(+)与CVA患者气道反应性差异无统计学意义(z=-0.084,P=0.933)。
2.6 激发试验前后气道阻力变化量TA BPT(+)、CVA和对照组,激发后气道阻力指标明显上升(均P<0.001)。TA BDT(+)患者舒张后气道阻力各指标明显下降(均P<0.001,表 3)。TA BPT(+)在响应频率(ΔFres)、呼吸总阻抗实测值/预计值(ΔZrs/pred)、总气道阻力实测值/预计值(ΔR5/pred)变化量均较CVA、对照组大(H=21.024,13.355,11.668,P=0.000,0.001,0.003),但CVA患者与对照组差异无统计学意义。3 组患者在中心气道阻力实测值/预计值(ΔR20/pred)变化量差异无统计学意义(H=2.572,P=0.283)。TA BPT(+)患者外周气道阻力(ΔR5~R20)、外周弹性阻力(ΔX5)变化量较对照组大(H=13.539,P=0.001);但TABPT(+)与CVA对比、CVA与对照组对比,外周气道阻力(ΔR5~R20)、外周弹性阻力变化量(ΔX5)差异无统计学意义(P>0.05,表 4)。
![]() |
表 3 哮喘患者激发试验/舒张试验前后气道阻力指标对比 Table 3 Changes of IOS parameters in patients with TAand CVAafter BPT/BDT |
![]() |
表 4 典型哮喘和咳嗽变异型哮喘患者激发试验前后气道阻力变化量比较 Table 4 Variations of IOS parameters in patients with TAand CVA |
TA BPT(+)、TA BDP(+)、对照组气道阻力各指标与FeNO均无明显相关性(均P>0.05)。CVA患者FeNO与呼吸总阻抗实测值/预计值(Zrs/pred)、总气道阻力实测值/预计值(R5/pred)、中心气道阻力实测值/预计值(R20/pred)呈正相关(r=0.523,0.542,0.524,P=0.038,0.030,0.037,表 5)。
![]() |
表 5 哮喘患者FeNO与气道阻力指标的相关性 Table 5 Correlations between FeNO and IOS parameters in patients with asthma |
TA BPT(+)患者气道阻力指标与气道反应性无明显相关性(均P>0.05)。CVA患者气道反应性等级与中心气道阻力呈强负相关(ρ=-0.512,P=0.043),即气道反应性与中心气道阻力呈强正相关(表 6)。
![]() |
表 6 哮喘患者气道高反应性与气道阻力指标的相关性 Table 6 Correlations between IOS parameters and airway hyper-responsiveness in patients with asthma |
哮喘是一种常见的呼吸道疾病,气道炎症、气道高反应性、可逆性气流受限是哮喘主要病理生理特征[16] 。CVA发病机制与典型哮喘类似,是由多种细胞参与的气道慢性炎症。我们发现TA BDP(+)病史最长、TA BPT(+)次之,均明显较CVA长,且CVA长于对照组,这与Niimi 等[7] 研究结论一致。但本研究纳入TABDT(+)患者,考虑典型哮喘患者病情长时间未控制出现肺功能损害的情况。
ACT、ACQ-7是评估哮喘病情的有效工具。一般情况下,ACT得分低于20分认为患者在过去4周哮喘可能没有得到控制;而ACQ-7 低于1.0 分可认为哮喘得到控制,高于1.0 分提示没有很好控制。我们发现CVA 患者ACT、ACQ-7 评分均较接近控制水平,而TA BDT(+)、TA BPT(+)患者无论ACT或ACQ-7,均提示哮喘没有控制。TA BDP(+)患者ACT 明显高于CVA,而TA BPT(+ )跟CVA 差异无统计学意义;而ACQ-7,TA BDT(+)、TA BPT(+)、CVA评分依次降低,两两对比有统计学差异;我们认为在评估哮喘病情ACQ-7 较ACT更为敏感。同时,CVA到TA BPT(+),再到TA BDT(+),ACQ-7提示病情逐步加重,控制水平逐步下降。FeNO可用于评估大气道到周围小气道的慢性气道炎症。研究中发现典型哮喘患者FeNO水平高于对照组,而CVA与对照组无统计学差异。这意味着典型哮喘患者慢性气道炎症较高,而CVA虽然存在气道炎症,但相对较轻,与既往研究[17-18] 结论一致。
小气道指的是内径小于2 mm、没有软骨的气道,通常位于气管支气管树的第8~23 级[19] ;因其特定的生理结构,导致黏膜易损伤及气道易阻塞。Cohen 等[20] 的研究中,分别使用大颗粒的腺苷和小颗粒腺苷进行支气管激发试验,说明小气道病变存在于哮喘患者中。TA BDT(+)肺通气功能指标明显低于其余3 组患者,提示TA BDT(+)患者已出现明显肺功能受损,而TA BPT(+)、CVA患者以上指标与对照组差异无统计学意义,提示TA BPT(+)、CVA患者肺功能仍正常。而最大呼气中期流速、50%、25%肺活量时最大呼气流速等小气道功能指标,CVA、TA BPT(+)、TA BDT(+)患者依次降低;同时,TA BDT(+)患者IOS各指标明显升高,这意味着此时,TA BDP(+)患者不仅出现大气道功能损害,小气道功能也出现损害,气道重塑程度严重。而TA BPT(+)、CVA患者只出现小气道功能损害,最大呼气中期流速、50%、25%肺活量时最大呼气流速降低提示小气道气流受限存在,但是IOS指标中反应小气道阻力的R5~R20未能反映。既往研究[21] 认为IOS指标反映小气道功能障碍比常规肺通气功能指标敏感,但本研究中发现最大呼气中期流速、50%、25%肺活量时最大呼气流速较IOS指标敏感。Niimi等[7] 通过对哮喘患者行支气管粘膜活检证实了典型哮喘患者气道重塑较CVA严重。我们的结论支持此观点,但我们认为CVA气道重塑比TA BDP(+)轻,但可能与TA BPT(+)接近。郁志伟等[9] 曾对学龄前儿童患者进行研究,发现典型哮喘患儿气道阻力指标均较CVA患儿高,但其中CVA患儿与非急性期典型哮喘患儿气道阻力指标无差异。我们认为急性期患者肺功能较非急性期差,气道阻力较高。本研究结论与之一致。TA BDT(+)患者肺功能较差,气道阻力高,而CVA与TA BPT(+)肺功能较好,气道阻力指标差异不明显。对于典型哮喘与CVA气道反应性等级对比,目前国内外研究[8, 17, 22] 结论尚不统一。但是本研究对比两者气道反应性无差异,但发现TA BPT(+)激发试验前后IOS指标变化量较CVA大,提示典型哮喘患者对乙酰甲胆碱反应明显强于CVA患者,气道反应性较CVA敏感。
研究认为哮喘患者小气道功能受到气道炎症的影响[4] 。近年有研究显示哮喘患者气道阻力与呼出气冷凝集物具有良好的关系[23] ;但也有人认为FeNO与气道阻力指标无相关性[25] 。我们发现CVA患者FeNO与呼吸总阻抗实测值/预计值(Zrs/pred)、总气道阻力实测值/预计值(R5/pred)、中心气道阻力实测值/预计值(R20/pred)呈正相关,中心气道阻力与气道反应性呈正相关,而在典型哮喘患者并未发现此现象。我们推论原因可能如下,FeNO反映的是大气道到小气道的炎症[25] ,在CVA患者中,由于周围小气道功能受损较轻,气道炎症主要来自中心气道,因此在CVA患者中,当气道炎症升高,中心气道阻力和总气道阻力明显升高。而在典型哮喘患者中,严重的气道重塑导致气道结构重新分布,患者中央气道以及周围气道功能损害严重,因此慢性炎症明显升高,但不与中央气道阻力呈相关关系。
气道高反应性和小气道功能障碍是CVA和典型哮喘的共同特征,表明CVA与典型哮喘是“同一疾病”。CVA患者ACQ-7较典型哮喘低,病程较典型哮喘患者短,气道炎症弱于典型哮喘患者,肺功能损害较典型哮喘患者轻,又提示CVA是典型哮喘的早期阶段[26] 。研究显示,如果不加干预30%~54%的CVA患者可发展为典型哮喘[26-29] ,早期吸入糖皮质激素可有效降低CVA进展为典型哮喘的风险[28] 。综上所述,我们推测CVA、TABPT(+)、TA BDT(+)是哮喘的不同阶段,如CVA长时间未得到控制可进展为TA BPT(+);如果此时仍不加干预,可出现小气道功能障碍、肺功能损害及气道重塑,可能发展为TA BDT(+),未来需要更多的临床随访数据以证实。
[1] | Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention (2016 update). http://ginasthma.org/gina-reports/Accessed 2016. |
[2] | Boulet LP, Fitzgerald JM, Reddel HK. The revised 2014 GINA strategy report: opportunities for change[J]. Curr Opin Pulm Med, 2015, 21 (1): 1-7. DOI: 10.1097/MCP.0000000000000125. |
[3] | Balzar S, Wenzel SE, Chu HW. Transbronchial biopsy as a tool to evaluate small airways in asthma[J]. Eur Respir J, 2002, 20 (2): 254-9. DOI: 10.1183/09031936.02.00261102. |
[4] | van der Wiel E, ten Hacken NH, Postma DS. Small-airways dysfunction associates with respiratory symptoms and clinical features of asthma: A systematic review[J]. J Allergy Clin Immunol, 2013, 131 (3): 646-57. DOI: 10.1016/j.jaci.2012.12.1567. |
[5] | Perez T, Chanez P, Dusser D, et al. Small airway impairment in moderate to severe asthmatics without significant proximal airway obstruction[J]. Respir Med, 2013, 107 (11): 1667-74. DOI: 10.1016/j.rmed.2013.08.009. |
[6] | an den Berge M, ten Hacken NH, Cohen J, et al. Small airway disease in asthma and COPD: clinical implications[J]. Chest, 2011, 139 (2): 412-23. DOI: 10.1378/chest.10-1210. |
[7] | Niimi A, Matsumoto H, Minakuchi M, et al. Airway remodelling in cough-variant asthma[J]. Lancet, 2000, 356 (9229): 564-5. DOI: 10.1016/S0140-6736(00)02584-8. |
[8] | Matsumoto H, Niimi A, Takemura M, et al. Features of cough variant asthma and classic asthma during methacholine-induced brochoconstriction:a cross-sectional study[J]. Cough, 2009, 5 : 3. DOI: 10.1186/1745-9974-5-3. |
[9] | 郁志伟, 谢娟娟, 钱俊, 等. 体外过敏原与脉冲振荡肺功能测定在儿童咳嗽变异性哮喘中的作用[J]. 中国当代儿科杂志, 2011, 13 (7): 554-7. |
[10] | 中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(支气管哮喘的定义、诊断、治疗和管理方案)[J]. 中华哮喘杂志:电子版, 2008, 2 (1): 3-13. |
[11] | Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999[J] . Am J Respir Crit Care Med, 1999, 160(6): 2104-17. |
[12] | Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry[J]. Eur Respir J, 2005, 26 (2): 319-38. DOI: 10.1183/09031936.05.00034805. |
[13] | Oostveen E, Macleod D, Lorino H, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments[J]. Eur Respir J, 2003, 22 (6): 1026-41. DOI: 10.1183/09031936.03.00089403. |
[14] | 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(第三部分)——组织胺和乙酰甲胆碱支气管激发试验[J]. 中华结核和呼吸杂志, 2014, 37 (8): 566-71. |
[15] | 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(第四部分)——支气管舒张试验[J]. 中华结核和呼吸杂志, 2014, 37 (9): 655-8. |
[16] | Short PM, Lipworth SI, Lipworth BJ. Relationships between airway hyperresponsiveness, inflammation, and calibre in asthma[J]. Lung, 2011, 189 (6): 493-7. DOI: 10.1007/s00408-011-9328-x. |
[17] | Shimoda T, Obase Y, Kishikawa R, et al. The fractional exhaled nitric oxide and serum high sensitivity C-reactive protein levels in cough variant asthma and typical bronchial asthma[J]. Allergol Int, 2013, 62 (2): 251-7. DOI: 10.2332/allergolint.12-OA-0515. |
[18] | Huang S Zhong N. Chronic airway inflammation and atopic features in cough variant[J]. Zhonghua Jie he he Hu Xi Za Zhi, 1997, 20 (5): 283-6. |
[19] | Usmani OS. Small airways dysfunction in asthma: evaluation and management to improve asthma control[J]. Allergy Asthma Immunol Res, 2014, 6 (5): 376-88. DOI: 10.4168/aair.2014.6.5.376. |
[20] | Cohen J, Postma DS, Douma WR, et al. Particle size matters: diagnostics and treatment of small airways involvement in asthma[J]. Eur Respir J, 2011, 37 (3): 532-40. DOI: 10.1183/09031936.00204109. |
[21] | Naji N, Keung E, Kane J, et al. Comparison of changes in lung function measured by plethymography and IOS after bronchoprovocation[J]. Respir Med, 2013, 107 (4): 503-10. DOI: 10.1016/j.rmed.2012.12.022. |
[22] | Niimi A, Amitani R, Suzuki K, et al. Eosinophilic inflammation in cough variant asthma[J]. Eur Respir J, 1998, 11 (5): 1064-9. DOI: 10.1183/09031936.98.11051064. |
[23] | Vuljanko IM, Turkalj M, Nogalo B, et al. Diagnostic value of a pattern of exhaled breath condensate biomarkers in asthmatic children[J]. Allergol Immunopathol (Madr), 2017, 45 (1): 2-10. DOI: 10.1016/j.aller.2016.05.001. |
[24] | Lee JW, Shim JY, Kwon JW, et al. Exhaled nitric oxide as a better diagnostic indicator for evaluating wheeze and airway hyperresponsiveness in preschool children[J]. J Asthma, 2015, 52 (10): 1054-9. DOI: 10.3109/02770903.2015.1046078. |
[25] | Liu L, Liu W, Liu C, et al. Study on small airway function in asthmatics with fractional exhaled nitric oxide and impulse oscillometry[J]. Clin Respir J, 2016 . DOI: 10.1111/crj.12548.. |
[26] | Fujimura M. Pathophysiology, diagnosis and treatment of cough variant[J]. Rinsho Byori, 2014, 62 (5): 464-70. |
[27] | Todokoro M, Mochizuki H, Tokuyama K, et al. Childhood cough variant asthma and its relationship to classic asthma[J]. Ann Allergy Asthma Immunol, 2003, 90 (6): 652-9. DOI: 10.1016/S1081-1206(10)61871-6. |
[28] | 张永明, 林江涛. 咳嗽变异性哮喘诊断和治疗新认识[J]. 中华结核和呼吸杂志, 2012, 35 (1): 62-4. |
[29] | Matsumoto H, Niimi A, Takemura M, et al. Prognosis of cough variant asthma: a retrospective analysis[J]. J Asthma, 2006, 43 (2): 131-5. DOI: 10.1080/02770900500498477. |