Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (9): 1769-1775.doi: 10.12122/j.issn.1673-4254.2024.09.17
Previous Articles Next Articles
Yifan JIANG1(
), Xiaorong LI2, Jiayi GENG3, Yongfeng CHEN2, Bi TANG2(
), Pinfang KANG2,4(
)
Received:2023-12-20
Online:2024-09-20
Published:2024-10-31
Contact:
Bi TANG, Pinfang KANG
E-mail:3173260851@qq.com;bitang2000@163.com;kangpinfang.1016@163.com
Supported by:Yifan JIANG, Xiaorong LI, Jiayi GENG, Yongfeng CHEN, Bi TANG, Pinfang KANG. Quercetin ameliorates diabetic kidney injury in rats by inhibiting the HMGB1/RAGE/ NF-κB signaling pathway[J]. Journal of Southern Medical University, 2024, 44(9): 1769-1775.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.09.17
| Group | FBG (mmol/L) | TG (mmol/L) |
|---|---|---|
| NC | 5.88±0.51 | 0.96±0.16 |
| HC | 5.80±0.33 | 1.48±0.19** |
| DM | 26.67±5.65** | 3.82±0.35** |
| DMQ | 19.28±1.45## | 2.95±0.29## |
Tab.1 Comparisons of fasting blood glucose (FBG) and triglyceride (TG) among the groups (Mean±SD, n=6)
| Group | FBG (mmol/L) | TG (mmol/L) |
|---|---|---|
| NC | 5.88±0.51 | 0.96±0.16 |
| HC | 5.80±0.33 | 1.48±0.19** |
| DM | 26.67±5.65** | 3.82±0.35** |
| DMQ | 19.28±1.45## | 2.95±0.29## |
| Group | BUN (mmol/L) | Scr (μmol/L) | 24 h-UP (mg/24 h) | RHI (×10-³) |
|---|---|---|---|---|
| NC | 8.11±0.45 | 35.9±2.4 | 16.03±2.04 | 5.3±0.3 |
| HC | 15.4±0.68** | 45.9±3.3** | 36.25±3.20** | 6.7±0.5 |
| DM | 18.45±0.30** | 59.1±3.1** | 65.42±3.59** | 14.6±0.6** |
| DMQ | 12.51±0.25## | 44.9±3.1## | 42.74±5.96## | 9.6±0.8## |
Tab.2 Comparison of blood urea nitrogen (BUN), serum creatinine (Scr), 24-hour urinary protein level (24 h-UP) and renal hypertrophy index (RHI) among the groups (Mean±SD, n=6 )
| Group | BUN (mmol/L) | Scr (μmol/L) | 24 h-UP (mg/24 h) | RHI (×10-³) |
|---|---|---|---|---|
| NC | 8.11±0.45 | 35.9±2.4 | 16.03±2.04 | 5.3±0.3 |
| HC | 15.4±0.68** | 45.9±3.3** | 36.25±3.20** | 6.7±0.5 |
| DM | 18.45±0.30** | 59.1±3.1** | 65.42±3.59** | 14.6±0.6** |
| DMQ | 12.51±0.25## | 44.9±3.1## | 42.74±5.96## | 9.6±0.8## |
Fig.3 Immunohistochemical results of NF-κB and relative protein expressions of HMGB1, RAGE and NF-κB in rat kidney tissues in each group (Mean±SD, n=4). A, B: Immunohistochemical results for NF-κB and quantitative analysis of its expression levels (a: NC group; b: HC group; c: DM group; d: DMQ group). C: Western blotting results of HMGB1, RAGE, NF-κB and GAPDH. D-F: HMGB1, RAGE and NF-κB protein levels normalized by GAPDH levels. **P<0.01 vs NC group; ##P<0.01 vs DM group.
Fig.4 Comparisons of relative protein expressions of Bax, Bcl-2 and caspase-3 in rat kidney tissues among the groups (Mean±SD, n=4). A: Western blotting results of Bax, Bcl-2, caspase-3 and GAPDH. B, C: Bax/Bcl-2 and caspase-3 protein levels normalized by GAPDH levels. **P<0.01 vs NC group; ##P<0.01 vs DM group.
| 1 | Tuttle KR, Brosius FC 3rd, Cavender MA, et al. SGLT2 inhibition for CKD and cardiovascular disease in type 2 diabetes: report of a scientific workshop sponsored by the national kidney foundation[J]. Am J Kidney Dis, 2021, 77(1): 94-109. |
| 2 | Yang C, Wang HB, Zhao XJ, et al. CKD in China: evolving spectrum and public health implications[J]. Am J Kidney Dis, 2020, 76(2): 258-64. |
| 3 | Tuttle KR, Cherney DZI. Therapeutic transformation for diabetic kidney disease[J]. Kidney Int, 2021, 99(2): 301-3. |
| 4 | Pezzolesi MG, Krolewski AS. The genetic risk of kidney disease in type 2 diabetes[J]. Med Clin North Am, 2013, 97(1): 91-107. |
| 5 | Alouffi S, Khan MWA. Dicarbonyls generation, toxicities, detoxifications and potential roles in diabetes complications[J]. Curr Protein Pept Sci, 2020, 21(9): 890-8. |
| 6 | Noels H, Lehrke M, Vanholder R, et al. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations[J]. Nat Rev Nephrol, 2021, 17(8): 528-42. |
| 7 | Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806. |
| 8 | Jaikumkao K, Thongnak L, Htun KT, et al. Dapagliflozin and metformin in combination ameliorates diabetic nephropathy by suppressing oxidative stress, inflammation, and apoptosis and activating autophagy in diabetic rats[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(1): 166912. |
| 9 | Pérez-Morales RE, Del Pino MD, Valdivielso JM, et al. Inflammation in diabetic kidney disease[J]. Nephron, 2019, 143(1): 12-6. |
| 10 | Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(11): 3798. |
| 11 | Wu M, Han WX, Song S, et al. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice[J]. Mol Cell Endocrinol, 2018, 478: 115-25. |
| 12 | 魏思灿, 林天来, 黄 玲, 等. 槲皮素通过PINK1/parkin通路激活线粒体自噬减轻大鼠脑缺血再灌注损伤[J]. 中国病理生理杂志, 2020, 36(12): 2251-7. |
| 13 | Chai GR, Liu S, Yang HW, et al. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression[J]. Neural Regen Res, 2021, 16(7): 1344-50. |
| 14 | Li XY, Chen RM, Lei XT, et al. Quercetin regulates ERα mediated differentiation of BMSCs through circular RNA[J]. Gene, 2021, 769: 145172. |
| 15 | 王建礼, 杨作成, 王 聪, 等. 槲皮素对糖尿病大鼠的降糖作用及机制研究[J]. 济宁医学院学报, 2018, 41(2): 135-8. |
| 16 | Wang S, Du SS, Wang WZ, et al. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy[J]. Biomedecine Pharmacother, 2020, 130: 110573. |
| 17 | 高 啸, 沈 莹. HMGB1-RAGE/TLRs-NF-κB信号通路中关键蛋白的表达与糖尿病肾病的关系[J]. 转化医学杂志, 2020, 9(6): 331-4, 339. |
| 18 | 黄小翠,于赵龙,祝子健,等.槲皮素对糖尿病大鼠肾脏保护主义研究[J].赣南医学院学报, 2023, 43(3): 262-6. |
| 19 | Hu TY, Yue JL, Tang QW, et al. The effect of quercetin on diabetic nephropathy (DN): a systematic review and meta-analysis of animal studies[J]. Food Funct, 2022, 13(9): 4789-803. |
| 20 | Furman BL. Streptozotocin-induced diabetic models in mice and rats[J]. Curr Protoc Pharmacol, 2015, 70: 5.47.1-5.47.20. |
| 21 | 茅莉娜, 王凤岩, 周轶琳,等.糖尿病肾病大鼠模型的制备[J].中文科技期刊数据库(全文版)医药卫生, 2023, 9: 11-4. |
| 22 | 张书力, 冯 丹.槲皮素通过下调缓激肽受体B1表达减轻糖尿病大鼠神经病理性疼痛[J].中国免疫学杂志, 2024, 40(2): 337-42. |
| 23 | 张煜敏,张桢烨,钱玲玲,等. 槲皮素通过AKT/FOXO3信号通路保护糖尿病大鼠心肌细胞[J]. 江苏大学学报(医学版), 2021, 31(3):185-9. |
| 24 | Maksymchuk O, Shysh A, Rosohatska I, et al. Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1[J]. Pharmacol Rep, 2017, 69(6): 1386-92. |
| 25 | Tang LX, Li K, Zhang Y, et al. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats[J]. Sci Rep, 2020, 10(1): 2440. |
| 26 | 王兴红,邓海峰,孙缦利. 槲皮素对糖尿病大鼠肾脏GSK3β信号通路的影响[J].中阿科技论坛(中英文), 2021, 9: 73-5. |
| 27 | Lontchi-Yimagou E, Sobngwi E, Matsha TE, et al. Diabetes mellitus and inflammation[J]. Curr Diab Rep, 2013, 13(3): 435-44. |
| 28 | Mora C, Navarro JF. Inflammation and diabetic nephropathy[J]. Curr Diab Rep, 2006, 6(6): 463-8. |
| 29 | Volz HC, Seidel C, Laohachewin D, et al. HMGB1: the missing link between diabetes mellitus and heart failure[J]. Basic Res Cardiol, 2010, 105(6): 805-20. |
| 30 | Chen XC, Ma J, Kwan T, et al. Blockade of HMGB1 attenuates diabetic nephropathy in mice[J]. Sci Rep, 2018, 8(1): 8319. |
| 31 | Markó L, Vigolo E, Hinze C, et al. Tubular epithelial NF-κB activity regulates ischemic AKI[J]. J Am Soc Nephrol, 2016, 27(9): 2658-69. |
| 32 | Bönner F, Gastl M, Nienhaus F, et al. Regional analysis of inflammation and contractile function in reperfused acute myocardial infarction by in vivo 19F cardiovascular magnetic resonance in pigs[J]. Basic Res Cardiol, 2022, 117(1): 21. |
| [1] | Yanyan DONG, Kejing ZHANG, Jun CHU, Quangen CHU. Didang Decoction-medicated serum enhances autophagy in high glucose-induced rat glomerular endothelial cells via the PI3K/Akt/mTOR signaling pathway [J]. Journal of Southern Medical University, 2025, 45(3): 461-469. |
| [2] | Hongyan SUN, Guoqing LU, Chengwen FU, Mengwen XU, Xiaoyi ZHU, Guoquan XING, Leqiang LIU, Yufei KE, Lemei CUI, Ruiyang CHEN, Lei WANG, Pinfang KANG, Bi TANG. Quercetin ameliorates myocardial injury in diabetic rats by regulating L-type calcium channels [J]. Journal of Southern Medical University, 2025, 45(3): 531-541. |
| [3] | Pengwei HUANG, Jie CHEN, Jinhu ZOU, Xuefeng GAO, Hong CAO. Quercetin mitigates HIV-1 gp120-induced rat astrocyte neurotoxicity via promoting G3BP1 disassembly in stress granules [J]. Journal of Southern Medical University, 2025, 45(2): 304-312. |
| [4] | Junjie GAO, Kai YE, Jing WU. Quercetin inhibits proliferation and migration of clear cell renal cell carcinoma cells by regulating TP53 gene [J]. Journal of Southern Medical University, 2025, 45(2): 313-321. |
| [5] | Xiupeng LONG, Shun TAO, Shen YANG, Suyun LI, Libing RAO, Li LI, Zhe ZHANG. Quercetin improves heart failure by inhibiting cardiomyocyte apoptosis via suppressing the MAPK signaling pathway [J]. Journal of Southern Medical University, 2025, 45(1): 187-196. |
| [6] | Kelei GUO, Yingli LI, Chenguang XUAN, Zijun HOU, Songshan YE, Linyun LI, Liping CHEN, Li HAN, Hua BIAN. Yiqi Yangyin Huazhuo Tongluo Formula alleviates diabetic podocyte injury by regulating miR-21a-5p/FoxO1/PINK1-mediated mitochondrial autophagy [J]. Journal of Southern Medical University, 2025, 45(1): 27-34. |
| [7] | Qing LIU, Jing LIU, Yihang ZHENG, Jin LEI, Jianhua HUANG, Siyu LIU, Fang LIU, Qunlong PENG, Yuanfang ZHANG, Junjie WANG, Yujuan LI. Quercetin mediates the therapeutic effect of Centella asiatica on psoriasis by regulating STAT3 phosphorylation to inhibit the IL-23/IL-17A axis [J]. Journal of Southern Medical University, 2025, 45(1): 90-99. |
| [8] | Ping SHU, Mengke YUAN, Ke YANG, Weizhi HE, Li LIU. Quercetin suppresses pyroptosis in mouse fibroblasts by inhibiting the NLRP3/caspase-1/GSDMD pathway [J]. Journal of Southern Medical University, 2024, 44(10): 1874-1880. |
| [9] | LI Ying, WANG Qian, CHEN Xiaoniao, XI Yue, YANG Jian, LIU Xiaomin, WANG Yuanda, ZHANG Li, CAI Guangyan, CHEN Xiangmei, DONG Zheyi. Validation and comparison of diabetic retinopathy-based diagnostic models for diabetic nephropathy [J]. Journal of Southern Medical University, 2023, 43(9): 1585-1590. |
| [10] | ZHANG Ningning, QIU Qi, CHEN Yongfeng, SUN Zhengyu, LU Guoqing, WANG Lei, KANG Pingfang, WANG Hongju. Quercetin improves pulmonary arterial hypertension in rats by regulating the HMGB1/RAGE/NF-κB pathway [J]. Journal of Southern Medical University, 2023, 43(9): 1606-1612. |
| [11] | LIU Lilan, DENG Ruya, ZHOU Wenjin, LIN Min, XIA Lingzi, GAO Haitao. Mechanisms mediating the inhibitory effects of quercetin against phthalates-induced testicular oxidative damage in rats [J]. Journal of Southern Medical University, 2023, 43(4): 577-584. |
| [12] | GAO Xiaoyang, ZHAO Xiaolu, ZHANG Chunyan, YAN Yuxin, JIN Rong, MA Yuehong. Quercetin induces hepatic stellate cell apoptosis by inhibiting the PI3K/Akt signaling pathway via upregulating miR-146 [J]. Journal of Southern Medical University, 2023, 43(10): 1725-1733. |
| [13] | WANG Ying, ZHOU Mingjun, ZHU Qianwen, ZHANG Cui, WANG Lin, LI Shu, HU Zebo. HIF-1α activation induces cholesterol homeostasis dysfunction to accelerate progression of diabetic nephropathy in rats [J]. Journal of Southern Medical University, 2023, 43(10): 1782-1788. |
| [14] | WANG Huanlan, LIU Hong, ZHANG Yanmin, CHEN Weidong. MiR-34a alleviates podocyte injury in mice with diabetic nephropathy by targeted downregulation of Notch signaling pathway [J]. Journal of Southern Medical University, 2022, 42(12): 1839-1845. |
| [15] | TAN Xin, XIAN Wei, CHEN Yongfeng, LI Xiaorong, WANG Qiyi, KANG Pinfang, WANG Hongju. Exploring the therapeutic mechanism of quercetin for heart failure based on network pharmacology and molecular docking [J]. Journal of Southern Medical University, 2021, 41(8): 1198-1206. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||