Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (9): 1769-1775.doi: 10.12122/j.issn.1673-4254.2024.09.17
Previous Articles Next Articles
Yifan JIANG1(), Xiaorong LI2, Jiayi GENG3, Yongfeng CHEN2, Bi TANG2(
), Pinfang KANG2,4(
)
Received:
2023-12-20
Online:
2024-09-20
Published:
2024-10-31
Contact:
Bi TANG, Pinfang KANG
E-mail:3173260851@qq.com;bitang2000@163.com;kangpinfang.1016@163.com
Supported by:
Yifan JIANG, Xiaorong LI, Jiayi GENG, Yongfeng CHEN, Bi TANG, Pinfang KANG. Quercetin ameliorates diabetic kidney injury in rats by inhibiting the HMGB1/RAGE/ NF-κB signaling pathway[J]. Journal of Southern Medical University, 2024, 44(9): 1769-1775.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.09.17
Group | FBG (mmol/L) | TG (mmol/L) |
---|---|---|
NC | 5.88±0.51 | 0.96±0.16 |
HC | 5.80±0.33 | 1.48±0.19** |
DM | 26.67±5.65** | 3.82±0.35** |
DMQ | 19.28±1.45## | 2.95±0.29## |
Tab.1 Comparisons of fasting blood glucose (FBG) and triglyceride (TG) among the groups (Mean±SD, n=6)
Group | FBG (mmol/L) | TG (mmol/L) |
---|---|---|
NC | 5.88±0.51 | 0.96±0.16 |
HC | 5.80±0.33 | 1.48±0.19** |
DM | 26.67±5.65** | 3.82±0.35** |
DMQ | 19.28±1.45## | 2.95±0.29## |
Group | BUN (mmol/L) | Scr (μmol/L) | 24 h-UP (mg/24 h) | RHI (×10-³) |
---|---|---|---|---|
NC | 8.11±0.45 | 35.9±2.4 | 16.03±2.04 | 5.3±0.3 |
HC | 15.4±0.68** | 45.9±3.3** | 36.25±3.20** | 6.7±0.5 |
DM | 18.45±0.30** | 59.1±3.1** | 65.42±3.59** | 14.6±0.6** |
DMQ | 12.51±0.25## | 44.9±3.1## | 42.74±5.96## | 9.6±0.8## |
Tab.2 Comparison of blood urea nitrogen (BUN), serum creatinine (Scr), 24-hour urinary protein level (24 h-UP) and renal hypertrophy index (RHI) among the groups (Mean±SD, n=6 )
Group | BUN (mmol/L) | Scr (μmol/L) | 24 h-UP (mg/24 h) | RHI (×10-³) |
---|---|---|---|---|
NC | 8.11±0.45 | 35.9±2.4 | 16.03±2.04 | 5.3±0.3 |
HC | 15.4±0.68** | 45.9±3.3** | 36.25±3.20** | 6.7±0.5 |
DM | 18.45±0.30** | 59.1±3.1** | 65.42±3.59** | 14.6±0.6** |
DMQ | 12.51±0.25## | 44.9±3.1## | 42.74±5.96## | 9.6±0.8## |
Fig.3 Immunohistochemical results of NF-κB and relative protein expressions of HMGB1, RAGE and NF-κB in rat kidney tissues in each group (Mean±SD, n=4). A, B: Immunohistochemical results for NF-κB and quantitative analysis of its expression levels (a: NC group; b: HC group; c: DM group; d: DMQ group). C: Western blotting results of HMGB1, RAGE, NF-κB and GAPDH. D-F: HMGB1, RAGE and NF-κB protein levels normalized by GAPDH levels. **P<0.01 vs NC group; ##P<0.01 vs DM group.
Fig.4 Comparisons of relative protein expressions of Bax, Bcl-2 and caspase-3 in rat kidney tissues among the groups (Mean±SD, n=4). A: Western blotting results of Bax, Bcl-2, caspase-3 and GAPDH. B, C: Bax/Bcl-2 and caspase-3 protein levels normalized by GAPDH levels. **P<0.01 vs NC group; ##P<0.01 vs DM group.
1 | Tuttle KR, Brosius FC 3rd, Cavender MA, et al. SGLT2 inhibition for CKD and cardiovascular disease in type 2 diabetes: report of a scientific workshop sponsored by the national kidney foundation[J]. Am J Kidney Dis, 2021, 77(1): 94-109. |
2 | Yang C, Wang HB, Zhao XJ, et al. CKD in China: evolving spectrum and public health implications[J]. Am J Kidney Dis, 2020, 76(2): 258-64. |
3 | Tuttle KR, Cherney DZI. Therapeutic transformation for diabetic kidney disease[J]. Kidney Int, 2021, 99(2): 301-3. |
4 | Pezzolesi MG, Krolewski AS. The genetic risk of kidney disease in type 2 diabetes[J]. Med Clin North Am, 2013, 97(1): 91-107. |
5 | Alouffi S, Khan MWA. Dicarbonyls generation, toxicities, detoxifications and potential roles in diabetes complications[J]. Curr Protein Pept Sci, 2020, 21(9): 890-8. |
6 | Noels H, Lehrke M, Vanholder R, et al. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations[J]. Nat Rev Nephrol, 2021, 17(8): 528-42. |
7 | Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806. |
8 | Jaikumkao K, Thongnak L, Htun KT, et al. Dapagliflozin and metformin in combination ameliorates diabetic nephropathy by suppressing oxidative stress, inflammation, and apoptosis and activating autophagy in diabetic rats[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(1): 166912. |
9 | Pérez-Morales RE, Del Pino MD, Valdivielso JM, et al. Inflammation in diabetic kidney disease[J]. Nephron, 2019, 143(1): 12-6. |
10 | Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(11): 3798. |
11 | Wu M, Han WX, Song S, et al. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice[J]. Mol Cell Endocrinol, 2018, 478: 115-25. |
12 | 魏思灿, 林天来, 黄 玲, 等. 槲皮素通过PINK1/parkin通路激活线粒体自噬减轻大鼠脑缺血再灌注损伤[J]. 中国病理生理杂志, 2020, 36(12): 2251-7. |
13 | Chai GR, Liu S, Yang HW, et al. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression[J]. Neural Regen Res, 2021, 16(7): 1344-50. |
14 | Li XY, Chen RM, Lei XT, et al. Quercetin regulates ERα mediated differentiation of BMSCs through circular RNA[J]. Gene, 2021, 769: 145172. |
15 | 王建礼, 杨作成, 王 聪, 等. 槲皮素对糖尿病大鼠的降糖作用及机制研究[J]. 济宁医学院学报, 2018, 41(2): 135-8. |
16 | Wang S, Du SS, Wang WZ, et al. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy[J]. Biomedecine Pharmacother, 2020, 130: 110573. |
17 | 高 啸, 沈 莹. HMGB1-RAGE/TLRs-NF-κB信号通路中关键蛋白的表达与糖尿病肾病的关系[J]. 转化医学杂志, 2020, 9(6): 331-4, 339. |
18 | 黄小翠,于赵龙,祝子健,等.槲皮素对糖尿病大鼠肾脏保护主义研究[J].赣南医学院学报, 2023, 43(3): 262-6. |
19 | Hu TY, Yue JL, Tang QW, et al. The effect of quercetin on diabetic nephropathy (DN): a systematic review and meta-analysis of animal studies[J]. Food Funct, 2022, 13(9): 4789-803. |
20 | Furman BL. Streptozotocin-induced diabetic models in mice and rats[J]. Curr Protoc Pharmacol, 2015, 70: 5.47.1-5.47.20. |
21 | 茅莉娜, 王凤岩, 周轶琳,等.糖尿病肾病大鼠模型的制备[J].中文科技期刊数据库(全文版)医药卫生, 2023, 9: 11-4. |
22 | 张书力, 冯 丹.槲皮素通过下调缓激肽受体B1表达减轻糖尿病大鼠神经病理性疼痛[J].中国免疫学杂志, 2024, 40(2): 337-42. |
23 | 张煜敏,张桢烨,钱玲玲,等. 槲皮素通过AKT/FOXO3信号通路保护糖尿病大鼠心肌细胞[J]. 江苏大学学报(医学版), 2021, 31(3):185-9. |
24 | Maksymchuk O, Shysh A, Rosohatska I, et al. Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1[J]. Pharmacol Rep, 2017, 69(6): 1386-92. |
25 | Tang LX, Li K, Zhang Y, et al. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats[J]. Sci Rep, 2020, 10(1): 2440. |
26 | 王兴红,邓海峰,孙缦利. 槲皮素对糖尿病大鼠肾脏GSK3β信号通路的影响[J].中阿科技论坛(中英文), 2021, 9: 73-5. |
27 | Lontchi-Yimagou E, Sobngwi E, Matsha TE, et al. Diabetes mellitus and inflammation[J]. Curr Diab Rep, 2013, 13(3): 435-44. |
28 | Mora C, Navarro JF. Inflammation and diabetic nephropathy[J]. Curr Diab Rep, 2006, 6(6): 463-8. |
29 | Volz HC, Seidel C, Laohachewin D, et al. HMGB1: the missing link between diabetes mellitus and heart failure[J]. Basic Res Cardiol, 2010, 105(6): 805-20. |
30 | Chen XC, Ma J, Kwan T, et al. Blockade of HMGB1 attenuates diabetic nephropathy in mice[J]. Sci Rep, 2018, 8(1): 8319. |
31 | Markó L, Vigolo E, Hinze C, et al. Tubular epithelial NF-κB activity regulates ischemic AKI[J]. J Am Soc Nephrol, 2016, 27(9): 2658-69. |
32 | Bönner F, Gastl M, Nienhaus F, et al. Regional analysis of inflammation and contractile function in reperfused acute myocardial infarction by in vivo 19F cardiovascular magnetic resonance in pigs[J]. Basic Res Cardiol, 2022, 117(1): 21. |
[1] | LI Ying, WANG Qian, CHEN Xiaoniao, XI Yue, YANG Jian, LIU Xiaomin, WANG Yuanda, ZHANG Li, CAI Guangyan, CHEN Xiangmei, DONG Zheyi. Validation and comparison of diabetic retinopathy-based diagnostic models for diabetic nephropathy [J]. Journal of Southern Medical University, 2023, 43(9): 1585-1590. |
[2] | ZHANG Ningning, QIU Qi, CHEN Yongfeng, SUN Zhengyu, LU Guoqing, WANG Lei, KANG Pingfang, WANG Hongju. Quercetin improves pulmonary arterial hypertension in rats by regulating the HMGB1/RAGE/NF-κB pathway [J]. Journal of Southern Medical University, 2023, 43(9): 1606-1612. |
[3] | LIU Lilan, DENG Ruya, ZHOU Wenjin, LIN Min, XIA Lingzi, GAO Haitao. Mechanisms mediating the inhibitory effects of quercetin against phthalates-induced testicular oxidative damage in rats [J]. Journal of Southern Medical University, 2023, 43(4): 577-584. |
[4] | GAO Xiaoyang, ZHAO Xiaolu, ZHANG Chunyan, YAN Yuxin, JIN Rong, MA Yuehong. Quercetin induces hepatic stellate cell apoptosis by inhibiting the PI3K/Akt signaling pathway via upregulating miR-146 [J]. Journal of Southern Medical University, 2023, 43(10): 1725-1733. |
[5] | WANG Ying, ZHOU Mingjun, ZHU Qianwen, ZHANG Cui, WANG Lin, LI Shu, HU Zebo. HIF-1α activation induces cholesterol homeostasis dysfunction to accelerate progression of diabetic nephropathy in rats [J]. Journal of Southern Medical University, 2023, 43(10): 1782-1788. |
[6] | WANG Huanlan, LIU Hong, ZHANG Yanmin, CHEN Weidong. MiR-34a alleviates podocyte injury in mice with diabetic nephropathy by targeted downregulation of Notch signaling pathway [J]. Journal of Southern Medical University, 2022, 42(12): 1839-1845. |
[7] | TAN Xin, XIAN Wei, CHEN Yongfeng, LI Xiaorong, WANG Qiyi, KANG Pinfang, WANG Hongju. Exploring the therapeutic mechanism of quercetin for heart failure based on network pharmacology and molecular docking [J]. Journal of Southern Medical University, 2021, 41(8): 1198-1206. |
[8] | . Ginsenoside Rh2 inhibits renal fibrosis and renal cell apoptosis in rats with diabetic nephropathy by downregulating discoid domain receptor 1 [J]. Journal of Southern Medical University, 2021, 41(7): 1107-1113. |
[9] | . Screening potential Chinese materia medica and their monomers for treatment of diabetic nephropathy based on caspase-1-mediated pyroptosis [J]. Journal of Southern Medical University, 2020, 40(09): 1280-1287. |
[10] | . Intervention of phlegm and blood stasis inhibits TGF-β1/Smad3 signaling pathway in the kidney of diabetic rats [J]. Journal of Southern Medical University, 2020, 40(05): 708-712. |
[11] | . Effect of traditional Chinese medicine for replenishing qi, nourishing yin and activating blood on renal Notch/Hes1 signaling in rats with diabetic nephropathy [J]. Journal of Southern Medical University, 2019, 39(07): 855-. |
[12] | . Quercetin alleviates lipopolysaccharide-induced acute kidney injury in mice by suppressing TLR4/NF-κB pathway [J]. Journal of Southern Medical University, 2019, 39(05): 598-. |
[13] | . Value of podocalyxin levels in urinary extracellular vesicles for diagnosis of diabetic nephropathy [J]. Journal of Southern Medical University, 2018, 38(09): 1126-. |
[14] | . Quercetin attenuates Ox-LDL-induced calcification in vascular smooth muscle cells by regulating ROS-TLR4 signaling pathway [J]. Journal of Southern Medical University, 2018, 38(08): 980-. |
[15] | . [J]. Journal of Southern Medical University, 2018, 38(03): 296-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||