南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (11): 2394-2404.doi: 10.12122/j.issn.1673-4254.2025.11.12

• • 上一篇    下一篇

基于多层语义与拓扑融合的异质图方法提升药物-靶标相互作用预测性能

陈紫豪1(), 郭延哺1,2, 宋胜利1(), 郭全明1, 周冬明3,4()   

  1. 1.郑州轻工业大学软件学院,河南 郑州 450001
    2.东南大学江苏省网络群体智能重点实验室,江苏 南京 211189
    3.湖南信息学院电子科学与工程学院,湖南 长沙 410151
    4.云南大学信息学院,云南 昆明 650500
  • 收稿日期:2025-05-21 出版日期:2025-11-20 发布日期:2025-11-28
  • 通讯作者: 宋胜利,周冬明 E-mail:chenzh000523@163.com;2003010@zzuli.edu.cn;zhoudm@ynu.edu.cn
  • 作者简介:陈紫豪,在读硕士研究生,E-mail: chenzh000523@163.com
  • 基金资助:
    国家自然科学基金(62403437);国家自然科学基金(62066047);河南省科技攻关项目(242102211039);郑州轻工业大学青年骨干教师培养资助项目(13502010009)

A heterogeneous graph method integrating multi-layer semantics and topological information for improving drug-target interaction prediction

Zihao CHEN1(), Yanbu GUO1,2, Shengli SONG1(), Quanming GUO1, Dongming ZHOU3,4()   

  1. 1.College of Software, Zhengzhou University of Light Industry, Zhengzhou 450001, China
    2.Jiangsu Provincial Key Laboratory of Networked Collective Intelligence, Southeast University, Nanjing 211189, China
    3.School of Electronic Science and Engineering, Hunan University of Information Technology, Changsha 410151, China
    4.School of Information Science and Engineering, Yunnan University, Kunming 650500, China
  • Received:2025-05-21 Online:2025-11-20 Published:2025-11-28
  • Contact: Shengli SONG, Dongming ZHOU E-mail:chenzh000523@163.com;2003010@zzuli.edu.cn;zhoudm@ynu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62403437)

摘要:

目的 为解决药物-靶标相互作用预测中存在的高阶语义依赖建模不足、语义路径融合缺乏自适应性及节点特征过平滑等问题,提出一种基于多层语义与拓扑融合的异质图预测方法。 方法 构建包含药物、蛋白质、副作用、疾病等多类实体的异质图网络,利用图嵌入技术获取低维特征表示。通过自适应元路径搜索模块,自动挖掘语义路径组合,引导高阶语义信息的传播;构建融合多头注意力的语义聚合机制,根据上下文信息自动学习各语义路径的重要性,实现路径间信息的差异化聚合与动态融合;引入结构感知的门控图卷积模块,调控特征传播强度,有效抑制冗余信息,缓解过平滑问题。最终通过内积操作预测药物与靶标之间的相互作用关系。 结果 本文所提方法在公开数据集上,接收机工作特征曲线下面积(AUC)和精确召回率曲线下面积(AUPRC)分别比现有药物靶标互作用预测方法的平均性能提高了3.4%和2.4%、3.0%和3.8%。 结论 本文设计的药物-靶标相互作用预测方法可有效提取异质生物网络中复杂的高阶语义和拓扑信息,提升药物-靶标相互作用预测的准确性和稳定性,可为药物靶标的精准发现和复杂疾病的精准治疗提供技术支撑和理论依据。

关键词: 药物-靶标相互作用, 异质网络, 门控机制, 多头注意力机制, 图卷积网络

Abstract:

Objective To develop a heterogeneous graph prediction method based on the fusion of multi-layer semantics and topological information for addressing the challenges in drug-target interaction prediction, including insufficient modeling of high-order semantic dependencies, lack of adaptive fusion of semantic paths, and over-smoothing of node features. Methods A heterogeneous graph network with multiple types of entities such as drugs, proteins, side effects, and diseases was constructed, and graph embedding techniques were used to obtain low-dimensional feature representations. An adaptive metapath search module was introduced to automatically discover semantic path combinations for guiding the propagation of high-order semantic information. A semantic aggregation mechanism integrating multi-head attention was designed to automatically learn the importance of each semantic path based on contextual information and achieve differentiated aggregation and dynamic fusion among paths. A structure-aware gated graph convolutional module was then incorporated to regulate the feature propagation intensity for suppressing redundant information and redcuing over-smoothing. Finally, the potential interactions between drugs and targets were predicted through an inner product operation. Results Compared with existing drug-target interaction prediction methods, the proposed method achieved an average improvement of 3.4% and 2.4%, 3.0% and 3.8% in terms of the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPRC) on public datasets, respectively. Conclusion The drug-target interaction prediction method developed in this study can effectively extract complex high-order semantic and topological information from heterogeneous biological networks, thereby improving the accuracy and stability of drug-target interaction prediction. This method provides technical support and theoretical foundation for precise drug target discovery and targeted treatment of complex diseases.

Key words: drug-target interaction, heterogeneous networks, gated mechanism, multi-head attention mechanism, graph convolutional networks