1 |
Bazgir F, Nau J, Nakhaei-Rad S, et al. The microenvironment of the pathogenesis of cardiac hypertrophy[J]. Cells, 2023, 12(13): 1780.
|
2 |
Bai YY, Zhang XY, Li Y, et al. Protein kinase A is a master regulator of physiological and pathological cardiac hypertrophy[J]. Circ Res, 2024, 134(4): 393-410.
|
3 |
Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy[J]. J Mol Cell Cardiol, 2016, 97: 245-62.
|
4 |
Zhu Feng. An essential introduction to the 2023 guideline for diagnosis and treatment patients with hypertrophic cardiomyopathy[J]. J Clin Cardiol, 2023, 39(6): 413-6.
|
5 |
Hwang HJ, Kim YK. Molecular mechanisms of circular RNA translation[J]. Exp Mol Med, 2024, 56(6): 1272-80.
|
6 |
Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-90.
|
7 |
Verduci L, Tarcitano E, Strano S, et al. CircRNAs: role in human diseases and potential use as biomarkers[J]. Cell Death Dis, 2021, 12(5): 468.
|
8 |
Wang MM, Wang BZ, Adi D, et al. Analysis on tissue-related biomarkers in patients with acute aortic dissection[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2021, 49(11): 1108-16.
|
9 |
Wang LJ, Feng JY, Feng X, et al. Exercise-induced circular RNA circUtrn is required for cardiac physiological hypertrophy and prevents myocardial ischaemia-reperfusion injury[J]. Cardiovasc Res, 2023, 119(16): 2638-52.
|
10 |
Zhao HL, Tan ZQ, Zhou J, et al. The regulation of circRNA and lncRNAprotein binding in cardiovascular diseases: Emerging therapeutic targets[J]. Biomed Pharmacother, 2023, 165: 115067.
|
11 |
杨 静. Circ-MYOCD参与心肌肥厚的功能与机制研究[D]. 银川: 宁夏医科大学, 2022.
|
12 |
Wang JM, Sun D, Wang MS, et al. Multiple functions of heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle[J]. Front Immunol, 2022, 13: 989298.
|
13 |
Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-binding proteins and microRNAs in neurodegenerative diseases[J]. Int J Mol Sci, 2021, 22(10): 5292.
|
14 |
Du JX, Zhu GQ, Cai JL, et al. Splicing factors: Insights into their regulatory network in alternative splicing in cancer[J]. Cancer Lett, 2021, 501: 83-104.
|
15 |
Gupta K, Yang CX, McCue K, et al. Improved modeling of RNA-binding protein motifs in an interpretable neural model of RNA splicing[J]. Genome Biol, 2024, 25(1): 23.
|
16 |
Chen YH, Zhong LF, Hong X, et al. Integrated analysis of circRNA-miRNA-mRNA CeRNA network in cardiac hypertrophy[J]. Front Genet, 2022, 13: 781676.
|
17 |
Xiao J, Joseph S, Xia MW, et al. Circular RNAs acting as miRNAs' sponges and their roles in stem cells[J]. J Clin Med, 2022, 11(10): 2909.
|
18 |
Jia KN, Cheng HM, Ma WQ, et al. RNA helicase DDX5 maintains cardiac function by regulating CamkIIδ alternative splicing[J]. Circulation, 2024, 150(14): 1121-39.
|
19 |
Shi QH, Wang JY, Yang Z, et al. CircAGFG1modulates autophagy and apoptosis of macrophages infected by Mycobacterium tuberculosis via the Notch signaling pathway[J]. Ann Transl Med, 2020, 8(10): 645.
|
20 |
Wei JX, Li MN, Xue CN, et al. Understanding the roles and regulation patterns of circRNA on its host gene in tumorigenesis and tumor progression[J]. J Exp Clin Cancer Res, 2023, 42(1): 86.
|
21 |
Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications[J]. Cell, 2022, 185(12): 2016-34.
|
22 |
Saha K, Fernandez MM, Biswas T, et al. Discovery of a pre-mRNA structural scaffold as a contributor to the mammalian splicing code[J]. Nucleic Acids Res, 2021, 49(12): 7103-21.
|
23 |
Zhang XF, Zhan XC, Bian T, et al. Structural insights into branch site proofreading by human spliceosome[J]. Nat Struct Mol Biol, 2024, 31(5): 835-45.
|
24 |
Li DY, Yu WY, Lai MD. Towards understandings of serine/arginine-rich splicing factors[J]. Acta Pharm Sin B, 2023, 13(8): 3181-207.
|
25 |
Tao YN, Zhang Q, Wang HY, et al. Alternative splicing and related RNA binding proteins in human health and disease[J]. Signal Transduct Target Ther, 2024, 9: 26.
|
26 |
李伟锋. CircHNRNPH1在心肌梗死后心肌纤维化中作用机制的研究[D]. 上海: 上海交通大学, 2019.
|
27 |
Wu WB, Chen A, Lin SM, et al. The identification and verification of hub genes associated with pulmonary arterial hypertension using weighted gene co-expression network analysis[J]. BMC Pulm Med, 2022, 22(1): 474.
|
28 |
Yuan Q, Sun YW, Yang F, et al. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes[J]. Signal Transduct Target Ther, 2023, 8(1): 99.
|
29 |
Li WF, Wang Y, Deng YF, et al. Epigenetic control of circHNRNPH1 in postischemic myocardial fibrosis through targeting of TGF‑β receptor type I[J]. Mol Ther Nucleic Acids, 2020, 25: 93-104.
|
30 |
Brownmiller T, Caplen NJ. The HNRNPF/H RNA binding proteins and disease[J]. Wiley Interdiscip Rev RNA, 2023, 14(5): e1788.
|