1 |
Zhang JS, Wang BQ, Yuan SZ, et al. The role of ferroptosis in acute kidney injury[J]. Front Mol Biosci, 2022, 9: 951275.
|
2 |
Thapa K, Singh TG, Kaur A. Targeting ferroptosis in ischemia/reperfusion renal injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(11): 1331-41.
|
3 |
Wang Y, Bi R, Quan F, et al. Ferroptosis involves in renal tubular cell death in diabetic nephropathy[J]. Eur J Pharmacol, 2020, 888: 173574.
|
4 |
Zhuo WQ, Wen Y, Luo HJ, et al. Mechanisms of ferroptosis in chronic kidney disease[J]. Front Mol Biosci, 2022, 9: 975582.
|
5 |
Chen X, Li JB, Kang R, et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17(9): 2054-81.
|
6 |
Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J]. Int J Mol Sci, 2022, 24(1): 449.
|
7 |
Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-21.
|
8 |
Jiang XJ, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-82.
|
9 |
Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019, 23: 101107.
|
10 |
Yang WC, Wang YX, Zhang CG, et al. Maresin1 protect against ferroptosis-induced liver injury through ROS inhibition and Nrf2/HO-1/GPX4 activation[J]. Front Pharmacol, 2022, 13: 865689.
|
11 |
Zhang Y, Liu MM, Zhang YY, et al. Urolithin A alleviates acute kidney injury induced by renal ischemia reperfusion through the p62-Keap1-Nrf2 signaling pathway[J]. Phytother Res, 2022, 36(2): 984-95.
|
12 |
Zhao Y, Feng XJ, Li B, et al. Dexmedetomidine protects against lipopolysaccharide-induced acute kidney injury by enhancing autophagy through inhibition of the PI3K/AKT/mTOR pathway[J]. Front Pharmacol, 2020, 11: 128.
|
13 |
Shan XS, Zhang JX, Wei X, et al. Dexmedetomidine attenuates renal ischemia-reperfusion injury through activating PI3K/Akt-eNOS signaling via α2 adrenoreceptors in renal microvascular endothelial cells[J]. FASEB J, 2022, 36(11): e22608.
|
14 |
Song L, Feng SL, Yu H, et al. Dexmedetomidine protects against kidney fibrosis in diabetic mice by targeting miR-101-3p-mediated EndMT[J]. Dose Response, 2022, 20(1): 15593258221083486.
|
15 |
Wang Z, Wu JL, Hu ZL, et al. Dexmedetomidine alleviates lipopolysaccharide-induced acute kidney injury by inhibiting p75NTR-mediated oxidative stress and apoptosis[J]. Oxid Med Cell Longev, 2020, 2020: 5454210.
|
16 |
Feng Q, Yu XY, Qiao YJ, et al. Ferroptosis and acute kidney injury (AKI): molecular mechanisms and therapeutic potentials[J]. Front Pharmacol, 2022, 13: 858676.
|
17 |
Mengstie MA, Seid MA, Gebeyehu NA, et al. Ferroptosis in diabetic nephropathy: mechanisms and therapeutic implications[J]. Metabol Open, 2023, 18: 100243.
|
18 |
Zhou YJ, Zhang JL, Guan QY, et al. The role of ferroptosis in the development of acute and chronic kidney diseases[J]. J Cell Physiol, 2022, 237(12): 4412-27.
|
19 |
Zhai MY, Han MM, Huang X, et al. Dexmedetomidine protects human renal tubular epithelial HK-2 cells against hypoxia/reoxygenation injury by inactivating endoplasmic reticulum stress pathway[J]. Cell J, 2021, 23(4): 457-64.
|
20 |
Liu YT, Liu W, Wan ZH, et al. Protective effect of dexmedetomidine against renal injury in diabetic nephropathy rats through inhibiting NF‑κB pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(22): 11865-70.
|
21 |
Tao WH, Shan XS, Zhang JX, et al. Dexmedetomidine attenuates ferroptosis-mediated renal ischemia/reperfusion injury and inflammation by inhibiting ACSL4 via α2-AR[J]. Front Pharmacol, 2022, 13: 782466.
|
22 |
Chen X, Comish PB, Tang DL, et al. Characteristics and biomarkers of ferroptosis[J]. Front Cell Dev Biol, 2021, 9: 637162.
|
23 |
Xie LH, Fefelova N, Pamarthi SH, et al. Molecular mechanisms of ferroptosis and relevance to cardiovascular disease[J]. Cells, 2022, 11(17): 2726.
|
24 |
Liu J, Kang R, Tang DL. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS J, 2022, 289(22): 7038-50.
|
25 |
Yan B, Ai YW, Sun Q, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J]. Mol Cell, 2021, 81(2): 355-69. e10.
|
26 |
Chen YP, Feng XJ, Hu XY, et al. Dexmedetomidine ameliorates acute stress-induced kidney injury by attenuating oxidative stress and apoptosis through inhibition of the ROS/JNK signaling pathway[J]. Oxid Med Cell Longev, 2018, 2018: 4035310.
|
27 |
Adedoyin O, Boddu R, Traylor A, et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells[J]. Am J Physiol Renal Physiol, 2018, 314(5): F702-14.
|
28 |
黄庆洋, 纪东东, 田绣云, 等. 小檗碱通过激活Nrf2-HO-1/GPX4通路抑制小鼠海马神经元HT22细胞的铁死亡[J]. 南方医科大学学报, 2022, 42(6): 937-43.
|
29 |
Li SW, Zheng LS, Zhang J, et al. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy[J]. Free Radic Biol Med, 2021, 162: 435-49.
|
30 |
Li X, Zou Y, Xing J, et al. Pretreatment with roxadustat (FG-4592) attenuates folic acid-induced kidney injury through antiferroptosis via akt/GSK-3β/Nrf2 pathway[J]. Oxid Med Cell Longev, 2020, 2020: 6286984.
|
31 |
Meng XY, Huang WJ, Mo WW, et al. ADAMTS-13-regulated nuclear factor E2-related factor 2 signaling inhibits ferroptosis to ameliorate cisplatin-induced acute kidney injuy[J]. Bioengineered, 2021, 12(2): 11610-21.
|