[1]于玮,邓秀玲,马真,等.雌马酚对PC12细胞缺氧/复氧损伤的保护作用及其机制[J].南方医科大学学报,2016,(01):1-7.
点击复制

雌马酚对PC12细胞缺氧/复氧损伤的保护作用及其机制()
分享到:

《南方医科大学学报》[ISSN:/CN:]

卷:
期数:
2016年01期
页码:
1-7
栏目:
出版日期:
2016-01-20

文章信息/Info

Title:
Equol protects PC12 neuronal cells against hypoxia/ reoxygenation injury in vitro by reducing reactive oxygen species production
作者:
于玮邓秀玲马真王燕
关键词:
雌马酚缺氧/复氧神经保护gp91phoxSrc激酶
Keywords:
equol hypoxia/reoxygenation neuroprotection gp91phox Src
摘要:
目的探讨雌马酚对PC12细胞缺氧/复氧损伤的保护作用及机制。方法以PC12细胞为研究对象,构建体外神经元缺氧/ 复氧损伤模型,用雌马酚进行干预。MTT法检测细胞活力,比色法测定细胞培养上清液中乳酸脱氢酶(LDH)活性和丙二醛(MDA)含量,免疫细胞化学法检测活性氧(ROS)含量,Western blotting 检测缺氧/复氧损伤的PC12 细胞内NADPH氧化酶2 (gp91phox)和磷酸化Src(p-Src)激酶的表达。结果雌马酚可有效减轻缺氧/复氧引起的PC12细胞损伤,降低缺氧/复氧损伤细胞培养上清液中LDH的活性和MDA的含量,明显抑制ROS的生成及gp91phox和p-Src的表达。结论雌马酚通过抑制p-Src激酶和gp91phox表达,减少ROS生成,从而对PC12细胞缺氧/复氧损伤产生保护作用。
Abstract:
Objective Both of gp91phox (an isoform of nicotinamide adenine dinucleotide phosphate-reduced oxidases) and Src (a non-receptor protein tyrosine kinase) play a prominent role in mediating hypoxia/reoxygenation injury of neurons. The present study was designed to investigate the neuroprotective effect of equol, a predominant active metabolite of daidzein, against hypoxia/reoxygenation injury in rat pheochromocytoma cell line (PC12) and explore the underlying mechanisms. Methods PC12 cells exposed to hypoxia/reoxygenation injury were examined for reactive oxygen species (ROS) using dihydroethidium and 2’, 7’-dichlorofluorescein diacetate and analyzed for changes in lactate dehydrogenase (LDH) activity and malondialdehyde (MDA) content. The expression levels of gp91phox and phosphorylated Src-Tyr416 (p-Src) were measured using Western blotting. Results Equol dose-dependently restored the cell viability and decreased LDH activity and MDA content in culture medium of PC12 cells exposed to hypoxia/reoxygenation. Pretreatment of the cells with 10-5 and 10-6 mol/L equol inhibited hypoxia/ reoxygenation-induced increase of ROS. PC12 cells treated with equol prior to hypoxia/reoxygenation injury showed significant enhancement of the protein levels of gp91phox and p-Src. Conclusion Equol confers neuroprotection against hypoxia/ reoxygenation injury in PC12 cells by inhibiting the generation of ROS very likely as a result of down-regulation of gp91phox and inhibition of Src phosphorylation.

参考文献/References:

[1] Liu M, Wu B, Wang WZ, et al. Stroke in China: epidemiology, prevention, and management strategies[J]. Lancet Neurol, 2007, 6 (5): 456-64.
[2] Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain[J]. J Cereb Blood Flow Metab, 2001, 21(1): 2-14.
[3]Sun AY, Wang Q, Simonyi A, et al. Resveratrol as a therapeutic agent for neurodegenerative diseases[J]. Mol Neurobiol, 2010, 41(2-3): 375-83.
[4] Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke[J]. Int J Stroke, 2009, 4(6): 461-70.
[5] Schild L, Reiser G. Oxidative stress is involved in the permeabilization of the inner membrane of brain mitochondria exposed to hypoxia/reoxygenation and low micromolar Ca2 +[J]. FEBS J, 2005, 272(14): 3593-601.
[6]Kahles T, Brandes RP. Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox2[J]. Antioxid Redox Signal, 2013, 18(12): 1400-17.
[7] Infanger DW, Sharma RV, Davisson RL. NADPH oxidases of the brain: distribution, regulation, and function[J]. Antioxid Redox Signal, 2006, 8(9-10): 1583-96.
[8] Sorce S, Krause KH. NOX enzymes in the central nervous system: from signaling to disease[J]. Antioxid Redox Signal, 2009, 11(10): 2481-504.
[9] Tang LL, Ye K, Yang XF, et al. Apocynin attenuates cerebral infarction after transient focal ischemia in rats[J]. J Int Med Res, 2007, 35(4): 517-22.
[10]Chen H, Song YS, Chan PH. Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion[J]. J Cereb Blood Flow Metab, 2009, 29(7): 1262-72.
[11]Kahles T, Luedike P, Endres M, et al. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke[J]. Stroke, 2007, 38(11): 3000-6.
[12]Knock GA, Ward JP. Redox regulation of protein kinases as a modulator of vascular function[J]. Antioxid Redox Signal, 2011, 15 (6): 1531-47.
[13]Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids[J]. Pharmacol Ther, 2001, 90(2-3): 157-77.
[14]Atkinson C, Frankenfeld CL, Lampe JW. Gut bacterial metabolism of the soy isoflavonedaidzein: exploring the relevance to human health [J]. Exp Biol Med (Maywood), 2005, 230(3): 155-70.
[15]Morito K, Hirose T, Kinjo J, et al. Interaction of phytoestrogens with estrogen receptors alpha and beta[J]. Biol Pharm Bull, 2001, 24(4): 351-6.
[16]Mitchell JH, Gardner PT, McPhail DB, et al. Antioxidant efficacy of phytoestrogens in chemical and biological model systems[J]. Arch Biochem Biophys, 1998, 360(1): 142-8.
[17]Rimbach G, De Pascual-Teresa S, Ewins BA, et al. Antioxidant and free radical scavenging activity of isoflavone metabolites[J]. Xenobiotica, 2003, 33(9): 913-25.
[18]Rüfer CE, Kulling SE. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays[J]. J Agric Food Chem, 2006, 54(8): 2926-31.
[19]Turner R, Baron T, Wolffram S, et al. Effect of circulating forms of soy isoflavones on the oxidation of low density lipoprotein[J]. Free Radical Res, 2004, 38(2): 209-16.
[20]Choi EJ, Kim GH. Anticancer mechanism of equol in 7, 12- dimethylbenz(a)anthracene-treated animals[J]. Int J Oncol, 2011, 39 (3): 747-54.
[21]Schreihofer DA, Do DK, Schreihofer AM. High-soy diet decreases infarct size after permanent middle cerebral artery occlusion in female rats[J]. Am J Physiol Regul Integr Comp Physiol, 2005, 289 (1): R103-8.
[22]Ma Y, Sullivan JC, Schreihofer DA. Dietary genistein and equol (4’, 7 isoflavandiol) reduce oxidative stress and protect rats against focal cerebral ischemia[J]. Am J Physiol RegulIntegr Comp Physiol, 2010, 299(3): R871-7.
[23]Yu W, Wang Y, Zhou DX, et al. Equol is neuroprotective during focal cerebral ischemia and reperfusion that involves p-Src and gp91phox [J]. Curr Neurovas Res, 2014, 11(4): 367-77.
[24]Ratan RR, Murphy TH, Baraban JM. Oxidative stress induces apoptosis in embryonic cortical neurons[J]. J Neurochem, 1994, 62 (1): 376-9.
[25]Vimard F, Nouvelot A, Duval D. Cytotoxic effects of an oxidative stress on neuronal-like pheochromocytoma cells (PC12)[J]. Biochem Pharmacol, 1996, 51(10): 1389-95.
[26]Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor[J]. Proc Natl Acad Sci USA, 1976, 73(7): 2424-8.
[27]Koo BS, Lee WC, Chung KH, et al. A water extract of Curcuma longa L. (Zingiberaceae) rescues PC12 cell death caused by pyrogallol or hypoxia/reoxygenation and attenuates hydrogen peroxide induced injury in PC12 cells[J]. Life Sci, 2004, 75(19): 2363-75.
[28]Zhao LM, Zhang W, Wang LP, et al. Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels[J]. Pflugers Arch, 2012, 464(6): 613-21.
[29]Lampe JW, Skor HE, Li S, et al. Wheat bran and soy protein feeding do not alter urinary excretion of the isoflavan equol in premenopausal women[J]. J Nutr, 2001, 131(3): 740-4.
[30]Risuleo G, Cristofanilli M, Scarsella G. Acute ischemia/hypoxia in rat hippocampal neurons activates nuclear ubiquitin and alters both chromatin and DNA[J]. Mol Cell Biochem, 2003, 250(1-2): 73-80.
[31]Xiao XQ, Lee NT, Carlier PR, et al. Bis(7)-tacrine, a promising anti- Alzheimer’s agent, reduces hydrogen peroxide-induced injury in rat pheochromocytoma cells: comparison with tacrine[J]. Neurosci Lett, 2000, 290(3): 197-200.
[32]Cheng C, Wang X, Weakley SM, et al. The soybean isoflavonoidequol blocks ritonavir-induced endothelial dysfunction in porcine pulmonary arteries and human pulmonary artery endothelial cells[J]. J Nutr, 2010, 140(1): 12-7.
[33]Hwang J, Wang J, Morazzoni P, et al. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification[J]. Free Radic Biol Med, 2003, 34(10): 1271-82.
[34]Fordel E, Thijs L, Martinet W, et al. Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions[J]. Gene, 2007, 398(1-2): 114-22.
[35]Chowdhury AK, Watkins T, Parinandi NL, et al. Src-mediated tyrosine phosphorylation of p47phox in hyperoxia-induced activation of NADPH oxidase and generation of reactive oxygen species in lung endothelial cells[J]. J Biol Chem, 2005, 280(21): 20700-11.
[36]Lambeth JD. NOX enzymes and the biology of reactive oxygen[J]. Nat Rev Immunol, 2004, 4(3): 181-9.
[37]Ward JP. Point: hypoxic pulmonary vasoconstriction is mediated by increased production of reactive oxygen species[J]. J Appl Physiol (1985), 2006, 101(3): 993-5.
[38]Kamata H, Hirata H. Redox regulation of cellular signaling[J]. Cell Signal, 1999, 11(1): 1-14.
[39]Tang XN, Cairns B, Kim JY, et al. NADPH oxidase in stroke and cerebrovascular disease[J]. Neurol Res, 2012, 34(4): 338-45.

更新日期/Last Update: 1900-01-01