[1]温锐,陈宏文,张雷,等.基于引导滤波的多图谱医学图像分割[J].南方医科大学学报,2015,(09):1263.
点击复制

基于引导滤波的多图谱医学图像分割()
分享到:

《南方医科大学学报》[ISSN:1673-4254/CN:44-1627/R]

卷:
期数:
2015年09期
页码:
1263
栏目:
出版日期:
2015-09-15

文章信息/Info

Title:
Medical image segmentation based on guided filtering and multi-atlas
作者:
温锐陈宏文张雷卢振泰
关键词:
图像分割引导滤波多图谱配准图谱先验标号融合海马体
Keywords:
image segmentation guided filtering multi-atlas registration atlas prior label fusion hippocampus
摘要:
目的为了有效的利用图谱的先验信息和待分割图像的灰度信息,并在融合标号图像的过程中校正配准引起的误差,得到
光滑、准确的分割结果,提出了一种新的基于引导滤波的多图谱医学图像分割方法。方法本文将多图谱配准与引导滤波相结
合。该方法包含4个部分:第一部分为多图谱配准,通过配准将图谱中存储的形状先验信息映射到待分割图像;第二部为标号融
合,利用配准的相似性作为权重,将形变后的标号图像融合在一起;第三部分为引导滤波,利用引导滤波引入待分割图像的灰度
信息,可以校正配准引起的误差;最后通过阈值处理,得到最终的分割结果。结果对15例脑部MR图像数据中的海马体进行分
割实验,左、右海马体分别达到了86%及87.4%的分割精度,与传统的标号融合算法相比,平均分割精度提升了2.4%。结论本
文方法结合多配谱配准与引导滤波的优势,提高了海马的分割精度,并得到光滑有效的分割精度。
Abstract:
A novel medical automatic image segmentation strategy based on guided filtering and multi-atlas is proposed to
achieve accurate, smooth, robust, and reliable segmentation. This framework consists of 4 elements: the multi-atlas
registration, which uses the atlas prior information; the label fusion, in which the similarity measure of the registration is used
as the weight to fuse the warped label; the guided filtering, which uses the local information of the target image to correct the
registration errors; and the threshold approaches used to obtain the segment result. The experimental results showed part
among the 15 brain MRI images used to segment the hippocampus region, the proposed method achieved a median Dice
coefficient of 86% on the left hippocampus and 87.4% on the right hippocampus. Compared with the traditional label fusion
algorithm, the proposed algorithm outperforms the common brain image segmentation methods with a good efficiency and
accuracy.

相似文献/References:

[1]陈春晓,王睿,彭娴璐,等.大脑组织分层体网格建立及变形技术研究[J].南方医科大学学报,2011,(10):1675.
[2]陈姿羽,黄靖,李伟鹏.一种改进的自适应谱聚类图像分割算法[J].南方医科大学学报,2012,(05):655.
[3]龚剑.一种基于分水岭和模糊聚类的多级图像分割算法[J].南方医科大学学报,2004,(03):329.
 GONG Jian.Hierarchical image segmentation based on watershed filtering and fuzzy cluster[J].Journal of Southern Medical University,2004,(09):329.
[4]张雷,张明慧,卢振泰,等.基于多权重概率图谱的脑部图像分割[J].南方医科大学学报,2015,(08):1143.
[5]黄奕晖,冯前进.基于三维全卷积DenseNet的脑胶质瘤MRI分割[J].南方医科大学学报,2018,(06):661.

更新日期/Last Update: 1900-01-01